
FRAMEWORK FOR EVALUATING
THE READINESS OF

CYBER FIRST RESPONDERS
RESPONSIBLE FOR CRITICAL

INFRASTRUCTURE PROTECTION

THESIS

Jungsang Yoon, CPT, USA

AFIT-ENG-MS-16-M-054

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-16-M-054

FRAMEWORK FOR EVALUATING

THE READINESS OF

CYBER FIRST RESPONDERS RESPONSIBLE FOR CRITICAL

INFRASTRUCTURE PROTECTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Electrical Engineering

Jungsang Yoon, B.S.E.E.

CPT, USA

24 March 2016

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-16-M-054

FRAMEWORK FOR EVALUATING

THE READINESS OF

CYBER FIRST RESPONDERS RESPONSIBLE FOR CRITICAL

INFRASTRUCTURE PROTECTION

THESIS

Jungsang Yoon, B.S.E.E.
CPT, USA

Committee Membership:

LTC Mason J. Rice, PhD
Chair

Maj Benjamin W. Ramsey, PhD
Member

Jonathan W. Butts, PhD
Member

AFIT-ENG-MS-16-M-054

Abstract

First responders go through rigorous training and evaluation to ensure they are ade-

quately prepared for an emergency. As an example, firefighters continually evaluate

the readiness of their personnel using a defined set of criteria to measure performance

for fire suppression and rescue procedures. From a cyber security standpoint, how-

ever, this same set of criteria and rigor is severely lacking for the professionals that

must detect, respond to and recover from a cyber-based attack against the nation’s

critical infrastructure.

This research provides a framework for evaluating the readiness of cyber first

responders responsible for critical infrastructure protection. The framework demon-

strates the development of evaluation environment, criteria and scenarios that are

modeled from NFPA 1410 standards concept that is used for assessing the readiness

of firefighters. The utility of framework is exhibited during a military cyber training

exercise and demonstrates the ability to evaluate the readiness of cyber first respon-

ders for industrial control systems when responding to the cyber-based attacks in the

scenarios. Although successful, the results and analysis provide a context to develop

a physical processes simulation tool, called Y-Box. The Y-Box creates more acces-

sible, representational, realistic and evaluation-friendly environment to enhance the

framework. The Y-Box demonstrates its application through the simulation of the

first two stages in a wastewater treatment plant. Its performance test demonstrates

its ability to interface with different types of signals from multiple programmable

logic controllers with an acceptable range of error. The utility of simulation is ex-

tended with the development of potential attacks that can be used in a cyber exercise

involving industrial control systems.

iv

AFIT-ENG-MS-16-M-054

I dedicate this thesis to my wife and daughter for their endless support and love.

v

Acknowledgements

I would like to sincerely thank my committee and Stephen Dunlap for the countless

hours of support and encouragement throughout the research.

Jungsang Yoon

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . ix

List of Tables . x

List of Abbreviations . xi

I. Introduction . 1

1.1 Motivation . 1
1.2 Research Goals and Hypotheses . 2
1.3 Thesis Layout . 3
1.4 Special Consideration . 3

II. Background and Literature Review . 4

2.1 Current Evaluation . 4
2.1.1 Assessing Readiness . 5

2.2 Evaluation Environment . 9
2.2.1 Existing Testbeds . 10

2.3 Industrial Control Systems and Physical Processes 11
2.3.1 Industiral Control Systems . 13
2.3.2 Physical Processes . 14

III. Methodology . 15

3.1 Development and Evaluation of Framework . 15
3.1.1 Evaluation Criteria . 16
3.1.2 Evaluation Environment . 17
3.1.3 Scenarios . 19

3.2 Functionality and Evaluation of Y-Box . 28
3.2.1 System Architecture . 28
3.2.2 Hardware Design . 34
3.2.3 Experiment Design . 37
3.2.4 Applications . 43

vii

Page

IV. Results and Analysis . 53

4.1 Framework Evaluation Results . 53
4.1.1 Recommendations . 54
4.1.2 Limitations in Hardware . 55

4.2 Y-Box Results . 55
4.2.1 Performance Test . 55
4.2.2 Applications . 62

V. Conclusion . 63

5.1 Conclusions of Research . 63
5.2 Research Hypothesis. 63
5.3 Significance of Research . 64
5.4 Recommendations for Future Research . 64

5.4.1 Common Scenarios for Evaluation . 64
5.4.2 Simulation within CPU Module . 65
5.4.3 Physical Processes Simulation Library . 65

Appendix A. Y-Box Schematic for Modules . 66

A.1 CPU Module . 66
A.2 Analog Input Module . 67
A.3 Analog Output Module . 68
A.4 Digital Input Module . 69
A.5 Digital Output Module [28] . 70

Appendix B. Microcontroller Code . 71

B.1 CPU Module . 71
B.2 Analog Input Module . 84
B.3 Analog Output Module . 89
B.4 Digital Input Module . 93
B.5 Digital Output Module . 97

Appendix C. Simulation code for WWTP stages . 101

Bibliography . 112

viii

List of Figures

Figure Page

1 Example NFPA 1410 evolution training standard [6]. 7

2 Comparison of human machine interfaces . 12

3 Apogee HVAC system schematics. 18

4 Functional diagram of the exercise system environment. 20

5 Representation of the real-time status . 20

6 HMI for industrial control systems operators . 21

7 Bluescreen effect created by system attack. 27

8 Attack results . 29

9 Simulation process. 30

10 System architecture overview. 31

11 Communication module connection. 33

12 IO modules communication flow. 35

13 Experiment set-up. 43

14 Physical setup for scenarios. 44

15 Scenario 1 and 2 sequential steps with dependencies. 46

16 Y-Box View vs. PLCs View. 49

17 Attack 1 example. 51

18 Attack 2 example. 52

19 Calibration impact. 57

20 Impact of two PLCs. 58

21 Comparison of PLCs. 59

22 Performance by analog amplitude. 61

ix

List of Tables

Table Page

1 Attributes of physical processes in the testbeds. 11

2 Main Parts . 34

3 Communication protocol. 38

4 Comparison of the readings from the views of
simulation and PLCs . 48

5 Overall system performance. 60

x

List of Abbreviations

Abbreviation Page

ICS Industrial Control Systems . 1

ISA International Society of Automation . 8

GICSP Global Industrial Cyber Security Professional 8

CSSA Certified SCADA Security Architect . 8

SCADA Supervisory Control and Data Acquisition . 8

ENISA European Union Agency for Network and
Information Security . 8

NSTB National SCADA Test Beds . 10

HMI Human Machine Interface . 11

ES Engineering Station . 13

PLC Programmable Logic Controller . 13

IO Input and Output . 13

VDC Volts Direct Current . 13

VAC Volts Alternating Current . 13

AI Analog Input . 13

DI Digital Input . 14

AO Analog Output . 14

DO Digital Output . 14

HVAC Heating, Ventilation and Air Conditioning . 15

WWTP Wastewater Treatment Plant . 28

ADC Analog to Digital Converter . 36

GPIO General Purpose IO . 36

DAC Digital to Analog Converter . 36

xi

FRAMEWORK FOR EVALUATING

THE READINESS OF

CYBER FIRST RESPONDERS RESPONSIBLE FOR CRITICAL

INFRASTRUCTURE PROTECTION

I. Introduction

1.1 Motivation

In a scene repeated by several motion pictures, burglars conduct a heist to steal

a precious piece of art from a museum by manipulating the security camera with a

recording that shows normal activities. While the guards watch the manipulated view

of the museum, the thieves effortlessly steal the art without being detected.

If the guards detected the manipulated camera view, it would have prevented

the precious art piece from being stolen. Just like the guards have a central role in

protection of their properties as a first line of defense, the cyber first responders for In-

dustrial Control Systems (ICS) have their own to protect against cyber-based attacks.

If this type of attack is unstopped and occurs to the national critical infrastructures,

the damage done can have detrimental impacts on the public’s safety. Evaluation

on the readiness of cyber first responders for ICS is in critical need to minimize or

prevent any damage from the cyber-based attacks. Currently, the evaluation of ICS

cyber professionals is not standardized and primarily conducted through exam-based

certifications, lacking real-time interaction with ICS.

1

1.2 Research Goals and Hypotheses

This thesis presents a framework for evaluating ICS cyber professionals through

the development of scenarios including evaluation criteria and environments that are

enabled by a physical processes simulation tool.

The research goals are:

1. The evaluation from the framework provides valuable feedback to improve the

readiness of cyber first responders for ICS.

2. The simulation tool provides an accessible, representational, realistic and evaluation-

friendly ICS environment, designed to train and assess the cyber first responders

for ICS.

The research hypotheses are:

1. The evaluation concept for first responders can be extended to the evaluation

of the cyber first responders for ICS.

2. The evaluation of cyber first responders for ICS can be conducted in an evalu-

ation environment that simulates physical processes.

3. Physically observable characteristics from simulated physical processes can be

effectively demonstrated through visualization.

4. The simulation tool can interact with types of physical signals typically used in

industrial applications and connect to multiple programmable logic controllers

at once.

This research proceeds with the assumption that high cost and geographical con-

straint to replicate the real physical processes prevents its implementation for evalu-

ation environment.

2

1.3 Thesis Layout

Chapter 1 introduces the motivation and goal of this thesis. Chapter 2 describes

background information that leads to framework development for evaluating the readi-

ness of cyber first responders for ICS and a creation of physical processes simulation

tool for evaluation environments. Chapter 3 explains the methods to evaluate the

framework and the simulation tool. Chapter 4 discusses the results collected in Chap-

ter 3. Chapter 5 summarizes with the conclusions and discusses a significance of this

research. This chapter offers recommendations for future work.

1.4 Special Consideration

The simulation of physical processes for the evaluation environment in Section 3.1

is developed prior to the creation of physical processes simulation tool, to partially

fulfill the requirements for this research. It is used to evaluate the framework and as

a pilot study to see the effectiveness of the custom application model for the physical

processes simulation before the full development of the tool. Described in Section 3.2,

the tool is ultimately created to complement the limitations discovered from the pilot

study. The limitations are described in Section 4.1.2. Chapter 4 provides analysis of

results for the framework and the tool in Section 4.1 and 4.2, respectively.

3

II. Background and Literature Review

Section 2.1 compares the current evaluation for first responders (e.g., firefighters)

with the one for ICS cyber professionals. Section 2.2 discusses different types of

industrial control systems testbeds and provide a context for the development of a

physical processes simulation tool. Section 2.3 provides an overview of elements that

are minimally required to replicate an evaluation environment.

2.1 Current Evaluation

Evaluation of first responders using realistic scenarios plays a vital role in deter-

mining mission readiness in the areas of public safety. It is hard to imagine a newly

recruited firefighter responding to an emergency situation without the proper assess-

ment of their ability to perform. Moreover, it is inconceivable for a fire station to

respond to a burning building without evaluating their personnel on the standard

tactics required to fight a fire. Indeed, it is critical that firefighters have the ability

to respond appropriately for the given situations they may face, such as the ability

to adequately lay the initial attack line and back-up line, and obtain the appropriate

water pressure within a time limit.

To evaluate the mission readiness of firefighters, fire departments often use the

NFPA 1410 national standards as a common set of criteria [6]. The NFPA 1410

provides a scenario-based standard that has been adopted by the community for

evaluating the readiness of firefighter first responders. The standards use real-world

scenarios and specify objectives, evaluation criteria and metrics for assessing the

readiness of firefighters. The evaluation scenarios identify weaknesses in training and

provide assurance that personnel are ready to respond appropriately.

4

Although first responders have used common criteria guidelines for decades to

assess the readiness of their personnel, the notion is in its infancy for cyber pro-

fessionals. Current training evaluation relies primarily on exam-based certifications.

This method of evaluation, however, is not sufficient given the responsibilities asso-

ciated with national critical infrastructure protection.

A cyber-based attack against the nation’s critical infrastructure could have devas-

tating consequences that directly impact public safety. There is a growing awareness

of the threats posed by cyber-based attacks and the implications; however, little is

being done to ensure the competency and preparedness of the cyber professionals that

will be called upon to detect, respond to and recover from an attack.

2.1.1 Assessing Readiness.

It is imperative that first responders are continually evaluated against realistic sce-

narios that may be encountered. Firefighters undergo extensive training and evalua-

tion that mirrors real-world situations to ensure an individual will respond adequately

when called upon. A common set of evaluation criteria helps prepare firefighters for

such responses and helps identify training deficiencies that need attention. Unfortu-

nately, this same set of criteria and rigor is severely lacking for the cyber security

professionals associated with responding to a cyber-based attack against the nations

critical infrastructure.

2.1.1.1 Standard on Training for Emergency Scene Operations.

Fire department personnel engaged in emergency scene operations use the NFPA

1410 evolutions standard for training evaluation [3]. This standard specifies criteria

and metrics that can be adapted to local conditions and serves as a mechanism for

evaluating minimum acceptable performance during training activities.

5

Figure 1 shows a representative evolution training standard for a handline-forward

lead out operation. This example simulates a response to a typical structure fire where

the company must secure a hydrant and lay supply lines towards the building on fire.

The firefighters are evaluated on the ability to correctly apply the forward lay water

supply tactic to obtain the appropriate water pressure to suppress a fire.

The example highlights the various criteria the team is evaluated on and specifies

the maximum time to complete the objective. The NFPA 1410 provides numerous

scenarios and criteria for evaluation that are based on tactics that relate to real-world

scenarios. It is important to note that the guidelines and criteria can be adapted to

meet local and scenario-specific requirements.

2.1.1.2 Cyber First Responders.

Historical events have demonstrated the susceptibility to disruptive cyber-based

attacks against critical infrastructure systems [31]. Attacks against ICS are on the

rise as they target operational capabilities within power plants, factories and refineries

[11]. As an example, ICS-CERT has issued alerts for multiple campaigns (e.g., Havex

RAT [16] and BlackEnergy [18]) aimed at targeting critical systems by exploiting vul-

nerabilities in products from GE, Advantech/Broadwin and Siemens [17]. Similarly,

a recent SANS report claims that a cyber attack was responsible for a power outage

in Ukraine [23]. According to the report, hackers likely compromised control systems

and installed malware to trip breakers to cut power and prevent technicians from

detecting the attack.

Attacks targeting national critical infrastructure can result in devastating conse-

quences. As a first line of defense, organizations spend increasing amounts of money

to train and hire cyber security personnel to prevent, identify and mitigate attacks

[29]. From a maturity standpoint, however, the ability to evaluate the readiness of

6

EVOLUTION DESCRIPTION:

A forward lay using one engine and one supply line. Deploy 300’ of 5” hose from hydrant to fire scene. Crew shall

deploy 2 hoselines (1 attack and 1 back-up) capable of flowing a minimum of 300 GPM within 3 minutes from start

of evolution. Engine shall be permitted to charge the initial attack line with tank water, hydrant supply shall be

established before back-up line is in place.

EVALUATION CRITERIA:

• All lines shall be completely deployed from hosebeds.

• All nozzles shall be flowing minimal acceptable pressures. Solid tips; 50psi Combo tips; 100 psi

• Time begins at signal from training officer until water is flowing at required pressure from both lines and
supply line has been established.

RECOMMENDED MAXIMUM TIME: 3 MINUTES

Reference: NFPA 1410, 2000 Edition; Training for Initial Emergency Scene Operations

 Department SOG’s

NOTE; Instructors / officers should substitute their department standard hose sizes, manpower, and procedures
for this evolution. The evolution provided is a guide to help you set up an initial attack evolution.

Objective To place a inital attack line (1 3/4) of min. 150’ and a back-up line (2 1/2:) of min. 150’
in-service, using units and staffing of the average number of personnel that ordinarily respond.

Min. 150’ 1 3/4”

(Attack line)

Min. 150’ 2 1 /2”

(Back-up Line)

300’

Supply Line

Min. 300

gpm total

from both

lines

NFPA 1410 Evolutions
Standard on Training for Initial Fire Attack

NFPA 1—Offensive Single Engine: Handline—Forward Lead Out

Figure 1. Example NFPA 1410 evolution training standard [6].

7

cyber first responders is in its infancy. Training is disparate and the requisite skill

sets have not been standardized [21]. Much attention has been given to frameworks

for system security and organizational risk (e.g., the NIST Framework for Improving

Critical Infrastructure Cybersecurity [20]); however, organizations do not have a stan-

dardized means to evaluate if personnel in a cyber first responder role are adequately

prepared to respond to an incident.

Current evaluation for ICS cyber security skill-sets relies primarily on professional

certifications. The International Society of Automation (ISA), a professional associ-

ation, developed a knowledge-based certificate program designed to test the security

standards described in ISA99 through a multiple choice exam[13]. The ISA99 stan-

dard provides guidelines in areas such as requirements for ICS security management,

security risk assessment and system design, and technical security requirements for

ICS components. Similarly, the Global Information Assurance Certification organi-

zation offers the Global Industrial Cyber Security Professional (GICSP) certification

that tests ICS security professionals on essential ICS security related knowledge ar-

eas [7]. The topics for the test questions include access management, cybersecurity

essentials for ICS, ICS architecture, ICS modules and elements hardening and ICS

security monitoring. The Information Assurance Certification Review Board offers a

Certified SCADA Security Architect (CSSA) certification for individuals that pass a

100 question exam on knowledge relating to securing a Supervisory Control and Data

Acquisition (SCADA) system [4].

The primary concerns with the certification programs are a lack of evaluation cri-

teria against a common set of standards and assessing the ability to apply knowledge,

concepts, or experiences to real-time situations associated with an actual exploitation

of ICS [10]. In a study performed by the European Union Agency for Network and

Information Security (ENISA) that examined existing ICS certification programs,

8

a key recommendation was the development of a framework for standardizing and

evaluating certified ICS security personnel [21].

In addition to certification programs, United States Government organizations

have implemented various critical infrastructure response efforts to include the Cy-

ber Defense Initiative (CDI) and Cyber Storm. The CDI is sponsored by the Federal

Emergency Management Agency (FEMA) and offers training courses to prepare tech-

nical personnel and managers associated with critical infrastructure protection [15].

The training uses lectures, lab exercises and online material to help students prepare

for and respond to a cyber-based terror attack.

Similarly, Cyber Storm is a DHS-sponsored exercise initiated in 2006 that tests and

evaluates the plans, policies and procedures for cyber security response professionals

[19]. Primarily intended to evaluate coordination and information sharing, Cyber

Storm focuses on policies and procedures associated with responding to a cyber-based

attack against the nations critical infrastructure.

Both government-sponsored efforts highlight the need for a standardized evalua-

tion framework for cyber first responders. Indeed, a common evaluation criteria is

needed that can be tailored to an organizations respective environment.

2.2 Evaluation Environment

An evaluation environment including real ICS is necessary to provide real-time

situations that evaluation criteria can be applied within. In most cases, the direct use

of live ICS is not always feasible due to high loss caused by down time and potential

damage for evaluation. Responding to this shortfall, many types of ICS testbeds

were developed as solutions for the cyber security research including functionality

tests between control systems and education for the responders.

9

2.2.1 Existing Testbeds.

In order to provide a realistic ICS environment, large-scale testbeds in places like

Idaho National Labs and Sandia National Labs recreate the real-world control sys-

tems, networks and physical processes [14]. Mississippi State’s ICS testbed presents a

real-world control system and real-world physical processes to support its cyber secu-

rity research and education [12]. Others fully or partially simulate their desired ICS

environments with or without the real-world equipment. Reaves et al.’s [5] testbed

fully simulate its ICS environment with virtual devices and simulator to replace the

control systems and physical processes, respectively. Wertzberger [32] et al.’s testbed

simulates physical processes and network while employing real-world control systems.

This research focuses on creating the ICS environment through the simulation of

physical processes. The simulation of physical processes in this research is designed

to satisfy the following attributes:

• Accessible: The physical processes are not geographically limited and cost much

less than the full suite of equipment.

• Expandable: The physical processes may be expanded to reflect a complex ICS

environment.

• Compatible: The physical processes may be connected to the different types of

real-world control systems.

• Separable: The physical processes may be monitored separately from the control

system interface.

The current solutions to the physical processes in their testbeds are summarized

according to attributes in Table 1.

While the physical processes in National SCADA Test Beds (NSTB) and Missis-

sippi State could be ideal, they are constrained by geographic location and are quite

10

Table 1. Attributes of physical processes in the testbeds.

Physical processes Accessible Expandable Compatible Separable
NSTB X X X
Mississippi State University X X X
Reaves et al. X X X
Wertzberger et al. X X X

expensive to build. Although the testbeds from Reaves et al. and Wertzberger et al.

can be accessible, expandable and connected to the real-world control systems, they

do not necessarily separate the views from the physically observable characteristics

of physical processes and what are processed by the control systems. The attribute

of separable allows the view of physically observable characteristics, which can be

used to discern the Human Machine Interface (HMI) under normal operation from

maliciously modified or malfunctioning HMI as seen in Figure 2.

If a museum wanted to replicate the movie scene discussed in Section 1.1 as an

exercise to test their defensive capabilities, the exercise coordinators might be tempted

to use the security cameras to monitor the progress of the thieves and to evaluate

the response of the guards. Were the thieves to execute the same camera attack,

the coordinators would be as blind as the guards themselves. Sadly, this is exactly

how cyber exercises are conducted today; the coordinators rely on the same view

of the exercise as the defenders. If attackers manipulate the view of the defenders,

the coordinators are unable to identify what the attackers have done and why the

defenders were unable to detect the changes. A view that can’t be altered by attackers

is necessary for effective control and evaluation by the coordinators.

2.3 Industrial Control Systems and Physical Processes

The evaluation environment is primarily consisted of ICS and physical processes.

11

(a) HMI under normal operation.

(b) Maliciously modified or malfunctioning HMI.

Figure 2. Comparison of HMIs to the views of physically observable characteristics of
physical processes.

12

2.3.1 Industiral Control Systems.

ICS is a general term used to describe an automation system that manages and

monitors the functionality of an industrial physical processes [9]. The HMI or En-

gineering Station (ES) and Programmable Logic Controller (PLC)s are minimally

required components of ICS for the evaluation environment.

2.3.1.1 HMI and ES.

An HMI or ES displays communications to and from PLCs and other physical

processes in a human-readable interface. This provides ICS operators the ability to

manage and monitor the physical processes [9].

2.3.1.2 Programmable Logic Controllers.

PLCs can be specialized to automate the functions in the physical processes [9].

PLCs for ICS typically include CPU modules, communication modules, power supply

and various types of Input and Output (IO) modules [22]. CPU modules act as the

primary control unit of the PLC and are programmed for each specific application.

Communication modules allow PLCs to communicate with other devices, such as

HMIs, data historians and other PLCs. IO modules allow PLCs to interface with

physical sensors and actuators to control an industrial processes. A sensor is any

device that measures an attribute of a system (e.g., temperature, pressure and flow

rate). An actuator is any device that controls physical aspects of a system (e.g., motor,

valve and heating element). Types of IO modules include analog, digital and specialty

modules. Digital signals are measured as either high or low and can be either Volts

Direct Current (VDC) or Volts Alternating Current (VAC). Typical analog signals

can be measured as either a voltage (0 VDC to 10 VDC) or as a current (4 mA to 20

mA or 0 mA to 20 mA) in an industrial application. Analog Input (AI) modules and

13

Digital Input (DI) modules allow a PLC to collect data from various types of sensors.

Analog Output (AO) modules and Digital Output (DO) modules allow a PLC to send

control data to actuators. Specialty modules, such as thermocouple input modules,

are used in ICSs to accomplish application-specific operations. This research focuses

on the interaction with the analog and digital modules of PLCs.

2.3.2 Physical Processes.

Physical processes (e.g., bar screening and grit removal from wastewater) can

be automated with the use of actuators and sensors in industrial facilities. PLCs

command actuators to control the physical processes which is generally based on

process data from sensors.

14

III. Methodology

Section 3.1 describes the experimental design of evaluation criteria, environment

and scenarios for the framework, to be evaluated in a cyber training exercise. Section

3.2 describes the functionality of physical processes simulation tool referred as Y-Box

hereafter. It further describes the Y-Box’s experiment set-up for a performance test

and applications.

3.1 Development and Evaluation of Framework

To help develop the framework for evaluating the readiness of cyber first respon-

ders, a study is conducted using the NFPA 1410 concept applied to ICS cyber security

personnel. The study evaluates the readiness of cyber security personnel to respond

to targeted cyber attacks during a military cyber training exercise that occurred over

a one week period. Although various scenarios are incorporated throughout the train-

ing exercise, the evaluation for cyber first responders focuses on developing scenarios,

defining criteria and specifying metrics for evaluation using the NFPA 1410 concept.

At the conclusion of the military cyber training exercise, the study is evaluated to

validate the utility of framework.

The training exercise consisted of: (i) a team of military cyber professionals re-

sponsible for ICS security; (ii) a red team that applies adversary tactics to exploit

ICS and create effects; and (iii) an evaluation team that measures the effectiveness of

the cyber professionals at identifying, responding and mitigating the attacks initiated

by the red team. The training environment consisted of a Siemens Apogee Heating,

Ventilation and Air Conditioning (HVAC) system that is configured for standard op-

erations. An evaluator monitoring capability is implemented for the Apogee system

15

to enable the evaluation team to discern physical effects created by the red team and

observe response actions of the cyber professionals.

3.1.1 Evaluation Criteria.

The training objectives, tactics and criteria are specified using the NFPA 1410

concept. The following example details an evaluation scenario for ICS cyber security

tasks.

Denial-of-service attack targeting the human machine interface (HMI)

• Objective: Identify a denial-of-service attack and minimize effects on physical

system operations.

• Description: Denial-of-service attack is launched from external IP that exhausts

resources on the HMI computer.

• Type: Loss of control and loss of awareness.

• Evaluation Criteria:

– Detect within three minutes.

– Report within six minutes.

– Prevent physical process down time.

• Reference: Operational response plans and security response plans.

In this example, the cyber security professionals should detect a denial-of-service

attack targeting the HMI within three minutes and report the attack through appro-

priate channels within six minutes. Additionally, the physical process should not be

16

disrupted. The attack creates a loss of control and awareness for the operator. Op-

erational response plans and security response plans are used to derive the expected

actions and requirements for the cyber first responders.

3.1.2 Evaluation Environment.

There are certain limitations in creating an operational environment for assess-

ment of ICS cyber security tasks. The use of real-world systems is not always feasible

due to potential damage and down-time for evaluation. Additionally, developing a

real-world system for evaluation purposes (e.g., water treatment facility, HVAC of a

building and gas pipeline flow control system), can be prohibitively expensive and

time consuming. The ability to incorporate ICS components coupled with simulated

attributes, however, has proven useful for training environments [8].

The cyber training exercise and evaluation incorporates the Siemens Apogee HVAC

system that includes an air conditioner, heater, and fan. To simulate the physical

processes and enable the evaluation team to observe physical effects, the input/out-

put settings for temperature and flow are simulated using a process control model

implemented in software. Figure 3 shows the Apogee system and components used

in the cyber training exercise.

PXCM1 is a programmable controller-modular (PXCM) that provides digital and

analog control of building sensors and actuators. PXCM1 receives sensor measure-

ments through the analog module and initiates control actions according to pro-

grammed logic through the digital module. For example, if a sensor is reporting a

temperature of 73◦ F and the air conditioner setpoint is configured for 70◦ F, PXCM1

will initiate a control signal to turn on the air conditioner. The status of the sys-

tem is relayed through an operator control panel that provides indicator lights and

readings for current conditions and provides the ability to override or modify settings

17

PXCM1

Module Power

Supply

Digital

Module

Analog

Module

Arduino UNO

Output Input

24 V to 5V Regulators

I O

-

+
24 VDC

Out

L

N

110 VAC

+ -

Fan
AC Heater

Abnormal Normal

Relay switches close contact when 24 VDC is supplied.

24

VDC

110

VAC

24

VDC

110

VAC

24

VDC

110

VAC

24

VDC

110

VAC

Simulation
Terminal

Serial

Connection

Figure 3. Apogee HVAC system schematics.

[30]. The Arduino UNO is a customizable microcontroller that provides 6 analog

inputs, 14 digital inputs/outputs and 6 PWM outputs. The Arduino microcontroller

is incorporated into the training exercise configuration to emulate the actuators and

sensors that control the physical environment conditions.

For the physical environment, a custom application in the simulation terminal

is used to emulate operating conditions. The application characterizes heating and

cooling parameters that alter the environmental settings. As shown in Figure 4,

the simulation terminal provides inputs to the Arduino microcontroller based on the

application output that represents environmental conditions (e.g., air temperature).

The microcontroller translates the settings into analog and digital voltage and sends

the corresponding signals to PXCM1. PXCM1 receives the signals and initiates the

appropriate control and notification actions. Similarly, when an operator initiates a

control action, the PXCM1 sends the control message to the Arduino UNO which, in

turn, updates the environmental variables. For example, if an operator initiates an

18

action to turn on the cooling fan, the PXCM1 sends a digital control signal that is

received by the Arduino. The Arduino sends an update message to the simulation

terminal to turn on the cooling fan. The simulation incorporates the change, and the

environment temperature will start to decrease accordingly.

The initial environment settings specified in the custom application include set-

point, minimum temperature and maximum temperature. The real-time status of the

heating and air conditioning is represented via a graphical interface shown in Figure

5. Note that this representation indicates the true physical state of the system and

is considered “ground truth” for environmental conditions.

The Apogee system incorporates FTP (Port 21) and Telnet (Port 23) services as

well as the Siemens P2 application (Port 5033) for management services. Using these

protocols, the HMI provides the graphical interface for the operators. As represented

in Figure 6, the display shows the current status of the system and enables the ability

to control the environment. Under normal operating conditions, the HMI should

reflect the actual physical environment conditions (i.e., the HMI should be consistent

with the custom application interface). An attacker that targets the integrity of the

system could exploit the Apogee system and change the operating parameters, while

masking the changes in the environment from the operator on the HMI.

3.1.3 Scenarios.

The scenarios are developed to evaluate specific objectives for cyber security pro-

fessionals. Note that for the purposes of this paper, the focus is on defining a frame-

work for evaluating cyber first responders, and not the performance of the cyber

security professionals during this specific training exercise. As such, the focus of

analysis is on the ability to use the NFPA 1410 concept for evaluating cyber first

responders in an actual training exercise scenario.

19

Figure 4. Functional diagram of the exercise system environment.

70 °F

Temperature

°F

60

70

80

90

100

110

120

130

140

OFF

AC

OFF

Heater

OFF

Fan

ON

Normal

OFF

Abnormal

Figure 5. Representation of the real-time status of environmental conditions.

20

Figure 6. The operator HMI for monitoring and controlling environmental conditions.

The scenarios are derived using operational requirements and expected actions

of the cyber security professionals. Five scenarios are presented that are evaluated

during the training exercise using the NFPA 1410 concept.

Gain Remote Access and Exfiltrate Data

• Objective: Identify remote system compromise and detect exfiltration of critical

system data.

• Description: The attacker performs a dictionary attack on the PXCM1 FTP

username/password and uses the credentials to login via Telnet. The Telnet

service for Apogee allows the attacker to change configurations or values to

control the HVAC and provides the attacker remote access. The attacker also

uses the FTP server to exfiltrate Apogee configuration data.

• Type: Loss of confidentiality.

21

• Evaluation Criteria:

– Detect within three minutes.

– Report within six minutes.

– Determine how system was compromised and identify all compromised

components.

– Remove compromised access.

– Reconfigure to prevent further compromise.

– Prevent physical process down time.

• Reference: Standard operating procedures, response action plans and cyber de-

fensive tactics, techniques and procedures manual.

System Denial-of-Service Attack

• Objective: Identify denial-of-service attack and restore system control.

• Description: The attacker uses a SYN flood to exhaust the resources of PXCM1.

The attack prevents the operator from controlling system processes.

• Type: Loss of control.

• Evaluation Criteria:

– Detect within three minutes.

– Report within six minutes.

– Recover physical process control within five minutes.

– Determine how system was compromised and identify all compromised

components.

22

– Remove compromised access.

– Reconfigure to prevent further compromise.

• Reference: Standard operating procedures, response action plans and cyber de-

fensive tactics, techniques and procedures manual.

System Crash

• Objective: Identify system compromise and restore system control and moni-

toring.

• Description: The attacker exploits a known vulnerability for the Apogee HMI

OS running Windows Vista SP1. A metasploit module allows the attacker to

exploit and crash the Apogee server.

• Type: Loss of control and loss of awareness.

• Evaluation Criteria:

– Detect within three minutes.

– Report within six minutes.

– Recover physical process control within five minutes.

– Determine how system was compromised and identify all compromised

components.

– Remove compromised access.

– Reconfigure to prevent further compromise.

• Reference: Standard operating procedures, response action plans and cyber de-

fensive tactics, techniques and procedures manual.

23

Repeated Reboot

• Objective: Identify system compromise, eradicate malware and restore system

control and monitoring.

• Description: The attacker installs a script on the network that sends a repeated

reboot command to PXCM1 through the Siemens P2 protocol. PXCM1 receives

the command and authorizes a reboot of the system. After the system reboots,

another command initiates a reboot to repeat the process.

• Type: Loss of control and loss of awareness.

• Evaluation Criteria:

– Detect within three minutes.

– Report within six minutes.

– Identify the malicious script installed that is forcing the reboot.

– Remove the script without effecting configuration of the physical process.

– Determine how system was compromised and identify all compromised

components.

– Remove compromised access.

– Reconfigure to prevent further compromise.

• Reference: Standard operating procedures, response action plans and cyber de-

fensive tactics, techniques and procedures manual.

Covert Manipulation of Control

• Objective: Identify system compromise, eradicate malware and restore system

operation parameters.

24

• Description: The attacker gains access to the Apogee system and modifies the

control code on PXCM1. The attacker increases the actual physical tempera-

ture, while providing a normal display on the HMI.

• Type: Loss of integrity.

• Evaluation Criteria:

– Detect within six minutes.

– Report within nine minutes.

– Identify the malicious script that is manipulating the temperature and

masking the impacts.

– Remove the script without effecting configuration of the physical process.

– Determine how system was compromised and all compromised compo-

nents.

– Remove compromised access.

– Reconfigure to prevent further compromise.

• Reference: Standard operating procedures, response action plans and cyber de-

fensive tactics, techniques and procedures manual.

3.1.3.1 Attack Details.

This section details the various attack scenarios and key indicators for the cyber

defense team.

• Gain Remote Access and Exfiltrate Data: The red team initiates an exploit

to obtain the admin username and password to extract sensitive data stored in

25

PXCM1 using the FTP service. The default usernames for Apogee accounts are

classified as high, medium and low for different privileges based on roles. The

high classification includes admin privileges, and the username and passwords

are not case sensitive. Additionally, the login credentials are the same for the

FTP and Telnet services. The red team executes a dictionary attack to obtain

the credentials and gain remote system access through the Telnet service. Once

system access is obtained, the red team accesses the PXCM1 configuration files

and extracts the data using the FTP service. Key indicators for the cyber pro-

fessional team include failed login attempts, unauthorized access and increased

network activities.

• System Denial-of-Service Attack: Using adjacent network access, the red team

initiates a denial-of-service attack using a SYN flood to exhaust the Apogee

system resources. The red team gains access to a vulnerable system on the same

network segment, and then sends a large number of SYN packets to PXCM1.

The attack results in a loss of control for the operator by preventing the ability

to send control commands for the HVAC system. Key indicators for the cyber

professional team include increased network traffic, unauthorized access and

loss of system control.

• System Crash: The red team utilizes a known vulnerability for the Apogee

server operating system (Windows Vista SP 1) to force a system crash. Using

adjacent network access, the red team initiates an attack that causes the Apogee

server to crash, as shown in Figure 7. The attack results in a loss of control

for the operator until the system is manually rebooted. Key indicators for the

cyber professional team include unauthorized commands, unauthorized access

and system failure.

26

Figure 7. Bluescreen effect created by system attack.

27

• Repeated Reboot Attack: The red team initiates an attack to force PXCM1 to

continually reboot. Using services offers via the Siemens P2 protocol, the red

team uses a malicious script to send repeated reboot commands to PXCM1.

The attack results in loss of control for the operator and the inability to mon-

itor environmental conditions. Key indicators for the cyber professional team

include unauthorized commands and system failure.

• Covert Manipulation of Control: The red team gains remote access to the

Apogee server and manipulates the control code of PXCM1. In this attack, the

red team overrides the temperature reading with a manipulated value. As seen

in Figure 8, the operator sees normal operating conditions, whereas the attack

has caused the actual environment to increase in temperature. Key indicators

for the cyber professional team include unauthorized commands, unauthorized

access and compromised system integrity.

3.2 Functionality and Evaluation of Y-Box

Section 3.2.1 and 3.2.2 explains the Y-Box system architecture and hardware

design to describe its functionality. Performance test and applications of the Y-Box

are described in Section 3.2.3 and 3.2.4.

3.2.1 System Architecture.

For the development of the first version of Y-Box, a preliminary site survey is

conducted in a Wastewater Treatment Plant (WWTP). The types of Y-Box input

and output modules in the first version are similar to the types seen in the PLCs in

the surveyed wastewater treatment plant.

A key design consideration is that the Y-Box exchanges physical signals only,

such as voltage or current, with PLCs to not interfere with any cyber activities in the

28

Figure 8. Attack results that manipulate environmental settings and mask implications
from the operator.

connected control systems. For the physical processes simulation, the Y-Box interacts

directly with a PLC’s IO modules to facilitate the real-time and accurate exchanges

of physical signals, replacing PLCs interaction with the real actuators and sensors.

A simulation terminal collects actuator data from PLCs, simulates the response of

a physical system, and then generates sensor values to send back to the PLCs. To

interact with a PLC, the Y-Box inputs are connected to the PLC outputs, and the

Y-Box outputs are connected to the PLC inputs. This process is shown in Figure 9.

Similar to a PLC, the Y-Box consists of a CPU module, an optional communication

module, and various IO modules. The proposed Y-Box architecture is shown in Figure

10. The Y-Box is intended to be flexible. The Y-Box modules are designed to allow

connection to a variety of PLCs, sensors and actuators.

29

Figure 9. Simulation process.

3.2.1.1 Analog Input Modules.

AI modules read analog signals generated by a PLC intended to control actuators

(e.g., pump and control valve). AI modules on the Y-Box support up to eight inputs

simultaneously and can measure voltage and current. The analog data is then re-

trieved by the CPU module for use in simulation. The AI module supports physical

actuators to connect to the voltage or current signals without negatively impacting

the accuracy of the signals. This allows the PLC to control a real actuator, while still

allowing the Y-Box to monitor the actuator control data. Through this capability,

the Y-Box can monitor an actuator and override the control data to simulate events

such as an actuator failure. AI modules can also be connected to real sensors that can

monitor a physical process. This flexibility allows the Y-Box to be used in a variety

of applications.

30

Figure 10. System architecture overview.

31

3.2.1.2 Digital Input Modules.

DI modules read digital signals generated by a PLC intended to control discrete

components in a system (e.g., light bulbs). DI modules support up to seven inputs

simultaneously and can be used with 24 VDC signals, which are typically used as

high signals for digital modules. The measured data are then retrieved by the CPU

module for simulation. Similar to the AI modules, DI modules can be connected in a

variety of configurations to ensure flexibility.

3.2.1.3 Analog Output Modules.

AO modules generate analog signals that simulate sensor outputs that are mea-

sured by a PLC. AO modules support up to eight outputs and can be configured to

generate either voltage or current. The PLC uses this computed sensor data from the

simulation to determine the desired actuator control data for the system.

3.2.1.4 Digital Output Modules.

DO modules generate voltage levels that simulate discrete sensors (e.g., level

switches) measured by a PLC. Similar to the DI modules, DO modules support up

to seven channels and can be used with 24 VDC.

3.2.1.5 CPU Module.

The CPU module is responsible for collecting data from Y-Box input modules and

sending data to Y-Box output modules. The CPU module can be connected via USB

to a simulation terminal or a communication module. Depending on the connectivity

requirements, the CPU module can act as a simple data pass-through, or it can run a

simulation program directly. This allows the CPU module to run a simulation while

isolated from any simulation terminals. Note that, if the CPU module acts as a pass-

32

through, a simulation terminal must be connected to the CPU module to execute the

simulation.

3.2.1.6 Communication Module.

The communication module provides a remote connection between the simulation

terminal and the CPU module. A Raspberry Pi is capable of serving as a communi-

cation module for the Y-Box as it has built-in USB and Ethernet ports. This type

of configuration is shown in Figure 11. The communication module allows the con-

nection of multiple CPU modules in Y-Boxes with a single simulation terminal via

Ethernet connection.

3.2.1.7 Simulation Terminal.

The simulation terminal receives actuator control data from the CPU module and

uses this data in a simulation program to compute the process values (e.g., water

level and flow rate) of the simulated physical system. The process values are used to

calculate analog and digital sensor values, which are sent to the Y-Box CPU module

for output to a PLC. The simulation program can be written in any language capable

of serial or network communication. The simulation terminal connects to the Y-Box

CPU module via USB, using an ASCII protocol. The received analog values range

Figure 11. Communication module connection.

33

from 0 and 4095 (12-bits), and digital values may be 0 or 1 to indicate low or high

status, respectively.

3.2.2 Hardware Design.

This section discusses the hardware design of the individual Y-Box modules. Each

IO module has one ATTiny44A microcontroller to handle communication with the

CPU module as shown in Figure 12. Main parts for the modules are listed in Table

2.

3.2.2.1 Analog Input Module.

The AI module supports up to eight inputs. A series of DIP switches are used to

individually configure each input for voltage or current. In voltage mode, the input

signal is measured directly. In current mode, a precision 250 Ω shunt resistor is used

to convert a 0 mA to 20 mA signal to a 0 VDC to 5 VDC signal. For each input, an

operation amplifier (opamp) is used to buffer the signal and limit any current leakage.

This buffer allows the current from the input to be unaffected should another device

need to measure the same signal. In voltage mode, another opamp is used as a voltage

divider to reduce the 0 VDC to 10 VDC signal down to 0 VDC to 5 VDC. In current

Table 2. Main Parts

Part Name Module Description Manufacturer
MCP3208 AI 8 ch. 12-bit ADC Microchip
MCP4902 AO 2 ch. 12-bit DAC Microchip
ATTiny44A All IO Microcontroller Atmel
Arduino Micro CPU Microcontroller (ATmega32U4) Board Atmel
LM324 AI, AO, DI Operational Amplifier TI
74HC138 CPU Demultiplexer NXP
XTR111 AO Voltage to Current Converter TI
KA7805 All IO 5V Voltage Regulator Fairchild

34

(a) AI module. (b) DI module.

(c) AO module. (d) DO module.

Figure 12. IO modules communication flow.

35

mode, this opamp simply acts as another buffer for the 0 VDC to 5 VDC signal.

The divided signal is then sent to an Analog to Digital Converter (ADC) with 12-

bit resolution. The ADC converts the 0 VDC to 5 VDC signal into an integer value

which is then read by the microcontroller via a serial connection. The microcontroller

continuously reads the channel values from the ADC via serial peripheral interface

and prepares them for transmission to the CPU module.

3.2.2.2 Digital Input Module.

The DI module supports up to seven inputs. For each input, one opamp is used

as a voltage divider to reduce the 0 VDC to 24 VDC signal to 0 VDC to 5 VDC.

The reduced signal is then read using a General Purpose IO (GPIO) pin of the

microcontroller.

3.2.2.3 Analog Output Module.

The AO module supports up to eight outputs simultaneously. A 12-bit Digital to

Analog Converter (DAC) is used to generate a 0 VDC to 5 VDC signal. An opamp

is used as a voltage amplifier to raise the voltage to 0 VDC to 10 VDC. This voltage

may then be read directly by a PLC analog input. Alternatively, the 0 VDC to 10

VDC signal may be fed into an optional voltage to current converter which converts

the signal to current that ranges from 0 mA to 20 mA.

3.2.2.4 Digital Output Module.

The DO module supports up to seven outputs simultaneously. The microcon-

troller’s GPIO pins are used to output a 0 VDC or 5 VDC signal. The 5 VDC signals

control NPN and PMOS transistors to output either 0 VDC or 24 VDC.

36

3.2.2.5 CPU Module.

The CPU module communicates with the IO modules using a Serial Peripheral

Interface. The Arduino Micro microcontroller in the CPU module acts as a bus master

and connects to the microcontroller in each IO module. The CPU module contains

a demultiplexer which is used to select a single IO module for communication. The

Arduino Micro’s digital pins are used to control the demultiplexer and select the IO

module to send information. Each IO module has an input that is used to select

that module. The current CPU module supports up to eight connected IO modules

simultaneously. The number of modules can be expanded in future versions by simply

adding another demultiplexer.

The protocol used to communicate with the IO modules is shown in Table 3. To

identify the slot number and type of each attached IO module, the CPU module sends

the heartbeat command to each slot. In return, it receives a unique ID for the IO

module connected to the selected slot. The heartbeat command is also periodically

used to verify the connection with each IO module during operation.

3.2.3 Experiment Design.

The goal of Y-Box is to simulate physical processes by interfacing with PLCs

via various types of signals. To accomplish this goal, the Y-Box needs to accurately

measure signals generated by a PLC, and it needs to be capable of generating signals

that a PLC can measure. To simulate realistic systems, the Y-Box needs to be

capable of scaling to interface with multiple PLCs at one time. This evaluation

focuses primarily on the accuracy of the Y-Box IO modules.

37

Table 3. Communication protocol.

Command
Byte 1 Byte 2

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Heartbeat 1 X X X X X X X N/A
Read AI 0 X X X Channel N/A
Read DI 0 0 X X Channel N/A
Read DI All 0 1 X X X X X X N/A
Write AO 0 Channel D
Write DO 0 0 X Channel D N/A
Write DO All 0 1 D X X X X X X

X - Don’t Care
D - Data
1 - High
0 - Low

3.2.3.1 Approach.

To evaluate the Y-Box AI module, an analog signal is generated by the PLC and

measured by the Y-Box. Similarly, to evaluate the Y-Box AO module, an analog

signal is generated by the Y-Box and measured by the PLC. The measured values are

then compared to the expected values to calculate the percent error. It is important

to note that the measured value is actually the error caused by the PLC in addition to

the error caused by the Y-Box. These two error sources cannot be readily separated

in this experiment.

3.2.3.2 Performance Metric.

The selected metric for the performance test is based on percent error over range

of the Y-Box IO modules as shown in Equation 1. The analog values for the Y-Box

modules range from 0 to 4095 (12-bit resolution). The digital values for the Y-Box

range from 0 to 1 to indicate low or high.

38

Percent Error Over Range (%) =
Abs. (Sent V alue−Received V alue)

Max. V alue−Min. V alue
×100 (1)

A similar metric is used by industrial PLC manufacturers such as Rockewell Au-

tomation to measure the precision of their equipment [27]. Two types of PLCs,

CompactLogix and ControlLogix from Rockwell Automation, are selected to deter-

mine the acceptable range of error. CompactLogix has the accuracy of ±0.7% and

±0.6% over the range for AI voltage and current modes, respectively, where its AO

has ±0.5% for both modes at room temperature [25]. ControLogix presents module

error from ±0.1% to ±0.6% depending on the various modules [26]. Considering the

measurements reflecting the errors from both the Y-Box and PLCs, it is considered

to be acceptable for the Y-Box to have the percent error over range similar to that

of CompactLogix.

3.2.3.3 Parameters.

The parameters listed here could potentially impact the performance of the Y-Box,

but are not specifically evaluated in this research.

• Number of IO modules: Although it is not expected to impact the accuracy of

Y-Box, the number of Y-Box IO modules connected at one time may potentially

impact performance. For this evaluation, one of each type of IO module (AI,

AO, DI and DO) is connected to a single Y-Box CPU module.

• Selected IO channels: The selected channel number for the Y-Box and PLC

impacts the accuracy if the various channels perform differently. This could

be caused by minor hardware differences between the channels. Although not

39

specifically addressed in this research, the channel numbers for the experiments

are randomized to account for these potential errors.

• Setup and hold time refer to the amount of time from when a signal is generated

to when it is measured. Pilot studies show that 400 ms is a sufficient delay to

allow all signals to reach steady state. This delay is used for all measurements

of the system.

3.2.3.4 Calibration.

All analog signals have some level of error created by flaws in the various hardware

components. PLCs often use a calibration process to account for these errors and

correct the component inaccuracies [27]. Calibration of the Y-Box is conducted during

the experiments to account for the margin of error in the hardware components.

The calibration values for each channel in the analog IO modules are measured and

recorded. A precision voltage source and precision voltage meter are used to measure

the calibration values. The raw measurements from each experiment are recorded,

and the calibration is applied as a post-processing step using Equations 3 and 2. The

calibration impact is discussed in Section 4.2.1.

Calibrated Data from

AI Module
=

Received V alue by Y –Box (0 to 4095)

Calibration V alue (V or I)
× 4095 (2)

Calibrated Data from

AO Module
=

Received V alue by PLC (0 to 4095)

Calibration V alue (V or I)
× 10 V or 20 mA

(3)

40

3.2.3.5 PLCs.

This evaluation utilizes two Allen Bradley PLCs to measure the performance of the

Y-Box. The first PLC is a ControlLogix PLC with the following modules: 1756-L61,

1756-ENBT, 1756-OF4, 1756-OB8, 1756-IF16 and 1756-IB16. These modules provide

the ControlLogix with one of each type of IO (AI, AO, DI, DO). The second PLC is a

CompactLogix 1769-L23E-QBFC1. This CompactLogix PLC also has each type of IO.

The ControlLogix used for evaluation offers 16-bit for AI current and voltage modes,

16-bit for AO voltage mode and 15-bit for AO current mode [27]. CompactLogix

offers 8-bit for all data types [24]. These two PLCs are used to evaluate the accuracy

of Y-Box IO modules; future work will evaluate the Y-Box with more types of PLCs.

Two configurations are used to evaluate the performance of the Y-Box with the

PLCs. The Y-Box is first evaluated with just the ControlLogix PLC connected and

then again with both PLCs connected. The accuracy achieved with one PLC con-

nected is compared to the performance with two PLCs connected. This determines if

having two PLCs connected at one time impacts the performance. Also, the perfor-

mance of the Y-Box with the ControlLogix is compared to the performance with the

CompactLogix. This helps show the difference in performance between PLCs with

varying resolution.

For each configuration, the input and output channels are randomly selected for

both the PLCs and Y-Box. It is important to note that the selected ControlLogix

channels are randomly changed for the second configuration.

3.2.3.6 Analog Values.

The amplitude of the analog signals is expected to impact the accuracy of the

measurements. To evaluate this impact, five analog values are used: 0, 1024, 2048,

3072 and 4095. In current mode, these values represent 0 mA, 5 mA, 10 mA, 15 mA

41

and 20 mA, respectively. In voltage mode, these values represent 0 V, 2.5 V, 5 V, 7.5

V and 10 V, respectively. This provides a range of values to determine the accuracy

of the Y-Box.

3.2.3.7 Digital Values.

All digital values are measured as high or low.

3.2.3.8 Experiment Set-up.

The experiment set-up for evaluation is shown in Figure 13. The data collector

residing in the simulation terminal interacts with CPU modules of PLCs and the

Y-Box to send and receive the necessary signals for the experiments. IO modules

in PLCs and Y-Box are interconnected to send and receive the signals processed by

the CPU modules. Below is the process used to collect data from PLC or Y-Box in

sequential steps. For analog modules, 50 measurements per channel per value for 5

different values (e.g., 0, 1024, 2048, 3072 and 4095) are collected to provide sufficient

data for analysis. For digital modules, 50 measurements per channel per value for 2

different values (e.g., high and low) are collected to provide sufficient data for analysis.

1. Determine parameters for the next measurement.

2. Write an analog or digital values to either the PLC or Y-Box.

3. Wait 400 milliseconds.

4. Read measured value from either the PLC or Y-Box.

5. Record measurement and expected value.

6. Wait 100 milliseconds.

42

Figure 13. Experiment set-up.

3.2.4 Applications.

This section describes how the Y-Box simulates the physical processes controlled

by PLCs in two scenarios. The Y-Box physically connects to the PLCs (ControlLogix

and CompactLogix), an exploded view is offered in Figure 14. The implementation

for the scenarios follows the simulation process shown in Figure 9.

3.2.4.1 Implementation of the First Scenario.

The first scenario simulates the bar screen stage in a WWTP. Bar screens are

typically the first step of processing wastewater in a WWTP to mechanically filter

out large objects (e.g., bulky solids, rags and plastics) [1]. Bar screens help reduce

clogging and damage of valves and pumps. The first seven steps in Figure 15 illustrate

the sequential steps of the bar screen stage. The boxes with sharp corners are part of

the PLC process, while the boxes with soft corners are for the Y-Box. It also shows

the dependencies represented in the directional arrows. The arrows illustrate the flow

43

Figure 14. Physical setup for scenarios.

44

of required data to compute process data for the sensor values and to determine the

actuator control data.

• Initial States: Initial states of wet well, stage 1, stage 2 and clog level are

required to give the starting points of the intended simulation. Wet well acts

as a reservoir of wastewater waiting to enter the bar screens stage. Stage 1 is

the water level in a bar screen stage before the filtering process (stage 2). The

initial states seen in Figure 16a are defined once at the start of simulation.

• Influent Rate: Influent rate is the user defined value that can be adjusted

throughout the simulation as seen in Figure 16a. Influent rate determines the

amount of wastewater entering from wet well to stage 1 in the bar screen stage.

An analog output of the Y-Box is used to send it to the PLC (Figure 15).

• Wet Well Level: Wet well level depends on the influent and pump rate. Wet well

level goes up by the amount of influent and down by the amount being pumped

out. It has two digital sensors to indicate low and high levels of wastewater.

Two digital outputs of the Y-Box are used to send the levels of wet well to PLC

1 (Figure 15).

• Pump: Pump rate is determined within PLC 1 based on the influent rate and

the water levels in the wet well and stage 1. For example, pump rate matches

influent rate when wet well level is high and stage 1 level is low. On the other

hand, pump stops regardless of influent rate when wet well level is low and stage

1 level high. An analog output of PLC 1 is used to send the pump rate data to

the Y-Box (Figure 15).

• Stage 1 Level: Stage 1 level is determined by the Y-Box based on the pump rate

and clog level of the bar screen. The clog level indicates the amount of material

built up in the bar screen. The clog level goes up when the bar screen collects

45

Figure 15. Scenario 1 and 2 sequential steps with dependencies.

more objects depending on the filth rate of wastewater or down when the bar

screen is cleaned. The bar screen is cleaned according to the clog clean rate

when the bar screen belt is on. The clog clean rate and filth rate are defined

as seen in Figure 16a and can be adjusted throughout the simulation. The clog

in the bar screen blocks, with varying degree, the water transfer from stage 1

resulting in the rise of water level. High pump rate and clog level would make

stage 1 level rise faster. Stage 1 has three digital sensors to indicate the water

levels (Low, High, High High). Three digital outputs of the Y-Box are used to

send the levels of stage 1 to PLC 1 (Figure 15).

• Bar Screen Belt: Bar screen belt operation includes two modes (i.e., automatic

and running). The automatic mode turns the bar screen belt on and off peri-

odically. The running mode keeps the bar screen belt running when the level

difference between stage 1 and 2 exceeds a set point defined in PLC 1. Y-Box

sends the stage 1 and 2 level difference to PLC 1 via an analog output. Once

the mode is determined, a digital output of PLC 1 is used to send it to the

Y-Box (Figure 15).

46

• Stage 2 and Effluent rate: Stage 2 releases the transferred water from stage 1

when it exceeds the amount stage 2 can hold. The amount of water that stage

2 can hold is defined before the simulation. Effluent rate is determined by the

amount of water stage 2 releases. An analog output of the Y-Box is used to

send it to PLC 2 (Figure 15). PLC 2 measures the amount of flow into the grit

tank from the effluent rate.

3.2.4.2 Implementation of the Second Scenario.

The second scenario is the extension of first scenario. It adds one more stage, grit

tank, to the first scenario with the addition of a PLC (Allen Bradley, CompactLogix

L23E) (Figure 15). The grit tank purpose is to remove smaller objects (e.g., sand,

broken glass, silt and pebbles) that may damage pumps and other mechanical devices

[2]. The last two steps in Figure 15 illustrate the sequential steps of grit tank stage.

• Grit Tank Pump Switch: The grit tank pump switch in the Y-Box acts as a

manual override for its operation. It is defined as seen in Figure 16a and can be

toggled between automatic and running mode. The modes are similar to those

in the bar screen belt. The automatic mode turns the grit tank pump on and

off periodically according to the control data sent by PLC 2. The running mode

simply keeps the pump running. A digital output of the Y-Box is used to send

the manual override data to PLC 2 (Figure 15).

• Grit Tank Pump Control: While PLC 2 controls the pump operation when the

switch is set to the automatic mode, its command is superseded when the switch

is set to running mode.

47

3.2.4.3 PLC and Y-Box Views of the Scenarios.

Under normal operation, it is essential that the views from PLCs and the Y-

Box are nearly equivalent. When the run button is pressed, the simulation follows

the loop process as shown in the Figure 9. Figures 16a, 16b and 16c are captured

simultaneously during the simulation and show the views from PLCs and the Y-Box.

Initial states in Figure 16a are defined once before the simulation starts. The user

defined values in Figure 16a can be adjusted throughout the simulation. Box 2 (in

the user defined values panel) indicate the levels of floats in the wet well and stage 1

of bar screen stage. The floats turn on when its water level is higher (for High or High

High float) or lower (for Low float) than the defined set points. Figure 16a displays

∼50 and ∼7 for wet well and stage 1 levels, respectively, not tripping any floats. Box

2 from Figure 16b shows that the digital inputs of PLC 1 match the Y-Box view as

seen in Figure 16a. The number 1 in Box 3 from Figure 16a indicates auto mode,

matching what is shown in PLC 2 (Figure 16c). Box 5 and 8 in Figure 16a also match

with the status shown in Box 5 in Figure 16b and Box 8 in Figure 16c. For the analog

values in Box 1, 4, 6 and 7, the values between PLCs and Y-Box closely match within

the Y-Box performance error when the PLC percent scale is converted to Y-Box 0 to

1 scale. The exact match of values in Box 7 in Figure 16b and Figure 16c show that

there is a successful communication between PLC 1 and PLC 2 for data exchanges.

Table 4 shows the comparison of analog and digital values in the corresponding

boxes from the simulation and PLCs views.

Table 4. Comparison of the readings from the views of simulation and PLCs

Box Number 1 2 3 4 5 6 7 8
Simulation 80% All off On 79.023% On 41.808% 21.994% Off

PlCs 79.769% All off On 79.769% On 47.799% 21.811% Off

48

(a) View from Y-Box.

(b) View from PLC 1. (c) View from PLC 2.

Figure 16. Y-Box View vs. PLCs View.

49

3.2.4.4 Attacks for Scenarios.

Moreover, a couple of potential attacks, utilizing views from PLCs and the Y-

Box are developed within the simulation scenarios to demonstrate the utility of the

Y-Box. When the attacks are used in an exercise, the ICS operators have the PLC

views where the exercise controllers have both views from PLCs and Y-Box. This way,

the exercise controller can tell immediately when the attackers maliciously modify the

HMI while observing the responses from the ICS operators.

• Attack 1 for Scenario 1: Attack 1 is a configuration modification attack

against PLC 1. PLC 1 includes an automatic scaling feature for configuration

of analog inputs and outputs. Once the scaling values are set by an engineer,

the true analog voltage or current level is hidden from the engineers and the

operators. The only way to detect this modification is to manually examine the

configuration of the PLC or to physically examine the process characteristics.

For this attack, the original scaling range of the analog output that controls the

pump is changed from 0% - 100% to 0% - 80%. This causes an intended control

value of 50% to actually set the pump to 62%, causing the pump to run harder

than intended. Figure 17 shows theimpact of the configuration modification.

The left side shows the Y-Box view of the real actuator value, while the right

side shows the PLC view. This type of attack could be used to interfere with

the physical processes of an ICS or to damage actuators.

• Attack 2 for Scenario 2: Attack 2 utilizes a ladder logic modification to

achieve a similar result on PLC 2. The ladder logic modification causes the

input read by PLC 2 for the flow rate into the grit tank to scale incorrectly.

This causes the PLC to think that less water is flowing into the grit tank than

there really is. The modification is transparent to the operators, and the only

way to detect this change is to manually examine the ladder logic. Figure 18

50

Figure 17. Attack 1 example.

51

shows the difference between the PLC value and the true value of the flow rate.

This type of attack can be used to interfere a physical process or to influence

billing and accounting data.

Figure 18. Attack 2 example.

52

IV. Results and Analysis

The evaluation criteria, environment and scenarios in Section 3.1 are successfully

employed during a military cyber exercise, proving the practicality of the framework

for evaluating the readiness of cyber first responders. The results from the Y-Box

performance test and applications are positive as well. Section 4.1 discusses the results

of framework evaluation. Section 4.2 discusses the results of performance test and

applications of the Y-Box.

4.1 Framework Evaluation Results

In each scenario, the cyber professional team was evaluated against the set criteria

that was derived from the NFPA 1410 concept. The evaluation team was able to

determine the effectiveness of the cyber professional team against a measurable set

of criteria. Based on the results of the exercise using the NFPA 1410 concept, the

evaluation team was allowed to:

• Evaluate the readiness of the cyber professional team to respond effectively to

cyber attacks.

• Determine deficiencies in the cyber professional team’s ability to identify and

mitigate effects from the cyber attacks.

• Determine the ability of the cyber professional team to minimize the cyber

attack effects on the physical processes.

• Identify and map shortfalls in cyber professional team responses to both training

deficiencies and capability deficiencies.

• Provide focused feedback to the cyber professional team on effective tactics and

actions that were not effective.

53

• Identify the key indicators used by the cyber professional team to respond to

the attacks.

• Evaluate the utility and effectiveness of the standard operating procedures,

response action plans and cyber defensive tactics, techniques and procedures

manual.

Use of the NFPA 1410 concept was critical for identifying the readiness of the cyber

professional team. Evaluations in previous exercises were not able to tie team actions

directly to requirements and specified evaluation criteria. One of the key advantages

was that the formal process helped drive scenario creation and focus evaluation on

skill sets and actions that cyber first responders would face during an actual event.

Moreover, the results support further exploitation of the custom application for future

simulation of environments.

4.1.1 Recommendations.

Although the initial findings for evaluating cyber first responders using the NFPA

1410 concept is positive, some key challenges were identified during the training ex-

ercise. The first major challenge is the incorporation of an environment that is ade-

quate for training evaluation. A training environment is needed that can be readily

configured to match operational parameters and provide the capability of evaluat-

ing response actions by the cyber first responders. Additionally, organizations must

dedicate resources to identify evaluators and assessment teams that are capable of

implementing the scenarios and exploiting the environment. Finally, the development

of common scenarios similar to the scenarios in NFPA 1410 is needed.

54

4.1.2 Limitations in Hardware.

Arduino UNO was able to meet the requirements to simulate a simple physical

process with two different views for the defenders and the coordinators, respectively,

however, some limitations are discovered. First, its inputs and outputs are not mod-

ular, creating difficulty to expand to accommodate specific number of inputs and

outputs from PLCs. Only way would be to increase the number of Arduino UNO.

Second, it is not entirely compatible with typical signal types used in ICS, operating

only in voltage mode. These limitations are heavily considered for the development

of the Y-Box so that it would enhance the framework.

4.2 Y-Box Results

The Y-Box performance test focuses on its accuracy with PLCs. Its applications

focus on the ability to demonstrate representational, realistic and evaluation-friendly

physical processes simulation.

4.2.1 Performance Test.

The experiment measurements are processed to discuss Y-Box performance im-

pacted by calibration, number and types of PLCs connected and analog values. Table

5 describes the overall performance of the Y-Box. In Figures 19, 20, 21 and 22, the

line in the box indicates median while the lower edge and upper edge of the box in-

dicate 1st and 3rd quartiles respectively. The whiskers are considered as boundaries

for the most extreme points. The + symbols are outliers.

4.2.1.1 Calibration Impact.

This section evaluates the calibration impact on the performance of the Y-Box.

Uncalibrated and calibrated measurements are drawn in boxplots to show distribution

55

over the performance metric (percent error over range). In both AI and AO, (in

Figures 19a and 19b), the calibrated data show noticeable improvement with a tighter

group closer to 0% error over range than the uncalibrated data. The ideal case is 100%

accuracy with the percent error over range of 0% for all measurements. For all further

results, the calibrated data are used to partially compensate for the inaccuracies

caused by the flaws in the hardware components.

4.2.1.2 Multiple PLCs.

Figure 20 compares Y-Box performance with ControlLogix from the two configu-

rations in Section 3.2.3.5. It is speculated that another power source from Compact-

Logix in the second configuration adds noise to the circuits, potentially affecting the

data measurements for accuracy. Separation of digital and analog grounds in Y-Box

analog modules may be required to account for the difference in performance. For all

further results, measurement data from the second configuration are used to depict

the Y-Box performance.

4.2.1.3 Different PLCs.

Figure 21 compares the Y-Box performance by the types of connected PLCs. Data

for the comparison are collected from the second configuration described in Section

3.2.3.5. One of the major differences between ControlLogix and CompactLogix is the

resolution to detect data changes for their analog modules, possibly explaining the

difference of Y-Box performance with each PLC.

4.2.1.4 Analog Amplitude.

Figure 22 shows the Y-Box performance across its range with varying analog

amplitude. Data for this analysis are also collected from the second configuration

56

Uncalibrated Calibrated
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(a) Analog input.

Uncalibrated Calibrated
0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(b) Analog output.

Figure 19. Comparison between calibrated and uncalibrated data.

57

ControlLogix in Exp 1 ControlLogix in Exp 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(a) Analog input.

ControlLogix in Exp 1 ControlLogix in Exp 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(b) Analog output.

Figure 20. Comparison of Y-Box performance with ControlLogix in experiment 1 and 2.

58

ControlLogix CompactLogix
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(a) Analog input.

ControlLogix CompactLogix
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(b) Analog output.

Figure 21. Comparison of Y-Box performance with ControlLogix and CompactLogix.

59

described in Section 3.2.3.5. The measurements are sorted according to the five

representational values introduced in Section 3.2.3.6. All measurements except one

in Figures 22a and 22b are within ±0.5% error without an exceptional deviation from

each other. The vast majority of measurements in the experiment are within ±0.25%

of percent error. This points to consistent Y-Box performance regardless of analog

amplitude for input and output.

4.2.1.5 Overall Performance (Analog Modules).

Table 5 shows mean, standard deviation and minimum and maximum percent

error. Table 5 shows the calibrated data from the second configuration as discussed.

Y-Box AI and AO with ControlLogix has the lower mean and standard deviation

than with CompactLogix, suggesting Y-Box performance on accuracy and consistency

varies with respect to the types of PLCs. All maximum values that illustrate the Y-

Box worst performance are measured well within ±0.7%. The minimum values that

illustrate the Y-Box best performance is as low as 0%. While all measurements range

from 0% to ±0.7%, the means for Y-Box AI and AO are less than ±0.1%, significantly

below the acceptable percent error over range proposed in Section 3.2.3.2.

Table 5. Overall system performance.

Mean (%) SD (%) Min (%) Max (%)

Y-Box AIs
ControlLogix 0.076 0.061 0.000 0.647

CompactLogix 0.113 0.113 0.000 0.429
Combined 0.088 0.084 0.000 0.647

Y-Box AOs
ControlLogix 0.073 0.044 0.006 0.188

CompactLogix 0.101 0.095 0.000 0.429
Combined 0.087 0.075 0.000 0.429

60

0 1024 2048 3072 4095
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(a) Analog input.

0 1024 2048 3072 4095
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
er

ce
nt

 e
rr

or
 o

ve
r

ra
ng

e
(%

)

(b) Analog output.

Figure 22. Comparison of Y-Box performance with different analog amplitudes.

61

4.2.1.6 Digital Performance.

As expected, all digital values between the digital modules of Y-Box and PLC

match with 100% accuracy, eliminating the need for further analysis.

4.2.2 Applications.

The Y-Box successfully demonstrats the multiple stages of WWTP by accurately

representing the dependencies between the simulated sensors and actuators. The de-

pendencies are validated by comparing the simulation with the expected behaviors

during the repeated simulation runs. The dependencies are easily adjustable if re-

quired to make the simulation more representational and realistic. As seen in Section

3.2.4.3, the nearly identical views under the normal operation confirm the exchange

of signals with negligible margin of error. In addition, a couple of attack examples

in Section 3.2.4.4 demonstrate that the simulation with the attack scenarios can be

incorporated into a cyber exercise immediately. The similar type of attack was per-

formed as described in Section 3.1.3 and proven effective during the military cyber

exercise.

62

V. Conclusion

This chapter summarizes overall conclusions of the previous chapters.

5.1 Conclusions of Research

This research demonstrates the utility of applying the NFPA 1410 concept for

evaluating cyber first responders. Findings from the cyber training exercise demon-

strate that the NFPA 1410 concept enhances the ability to evaluate the readiness of

cyber first responders against real-world scenarios. The results show that the frame-

work provides a means to adequately identify deficiencies in cyber first responders’

ability to identify and mitigate attacks, identify key indicators used to respond to

attacks, and provide feedback to enhance response action and training.

Through the applications, the Y-Box demonstrates its ability to simulate the

complex physical processes by interacting with various types of signals from multiple

PLCs. The performance test of Y-Box demonstrates its precise exchanges of signals

with PLCs, which are required to correctly simulate the physical processes and give

intended signals back to PLCs. Utilizing the Y-box simulation terminal, the physically

observable characteristics are effectively visualized, separate from HMI, to enhance

the evaluation mechanism. Affordable cost to build the Y-Box with its small footprint

demonstrates it is relatively free of resources and geographic constraints.

5.2 Research Hypothesis.

The successful evaluation of cyber first responders in an exercise confirms the hy-

potheses that evaluation method can be developed from the one used for first respon-

ders (e.g., firefighters) and evaluation can be conducted in a simulated environment.

Through the performance test and applications, the Y-Box confirms the hypothesis

63

that the simulation tool can interface physical signals, typically used for industrial

applications, from multiple PLCs of different kinds. The Y-Box applications confirm

the hypothesis that physically observable characteristics from the simulated physical

processes can be effectively visualized through a customized graphical interface.

5.3 Significance of Research

The current process for evaluating the readiness of cyber professionals for critical

infrastructure protection is overly reliant upon on exam-based certifications. Un-

fortunately, this process does not provide an adequate ability to examine the true

effectiveness of cyber first responders in real-world scenarios. With attacks targeting

critical infrastructure on the rise and the potential devastating implications to public

safety, it is imperative to find a means to evaluate the readiness of the personnel that

will be the first-line responders. Through this research, the framework for evaluating

the readiness of cyber first responders is carefully developed and its utility is tested.

Based on the positive results from the test, the framework can be expanded to provide

comprehensive and standardized evaluation method for cyber first responders. The

Y-Box can be used to support the effort by facilitating the extension of the scenario

types that require more complex, realistic evaluation environments.

5.4 Recommendations for Future Research

The recommendations are collected based on the experience from this research.

5.4.1 Common Scenarios for Evaluation.

This research presents five potential scenarios that are used in a cyber exercise.

Common scenarios that are mapped to reference documents such as the NIST Special

64

Publication 800-82 Guide to Industrial Control System Security can be developed to

meet the local and specific needs of evaluation.

5.4.2 Simulation within CPU Module.

This research has a dedicated simulation terminal that connects to the CPU mod-

ule of the Y-Box for the simulation of physical processes. The simulation terminal

requires substantial resources for software license and establishment of its hardware

platform. The cost can be reduced with the development of open source graphic user

interface that can be run within the CPU module.

5.4.3 Physical Processes Simulation Library.

The Y-Box demonstrates the first two stages within WWTP. When more types of

physical processes simulation are added, user-friendly library feature that can select

a desired simulation can support users with limited or no background knowledge on

the Y-Box. The library feature should be accompanied by the PLC ladder logic codes

and specifics on the physical connection between the Y-Box and PLCs. User-friendly

hardware design with more precise components is in progress.

65

Appendix A. Y-Box Schematic for Modules

Schematics are drawn by Eagle PCB Design Software using open source library.

A.1 CPU Module

74138N

2
2
0

K
1
6

A
1
5

D
B
7

1
4

D
B
6

1
3

D
B
5

1
2

D
B
4

1
1

D
B
3

1
0

D
B
2

9
D
B
1

8
D
B
0

7
E

6
R
W

5
R
S

4
V
O

3
V
D
D

2
V
S
S

1

V1

7

9

10

11

12

13

14

15

4

5

6

3

2

1

R1

R
0

V1/+UB

1
6

V1/-UB
8

JP1

1
2
3

JP2

1
2
3

JP3

1
2
3

JP4

1
2
3

JP5

1
2
3

D12
D12

D11
D11

D10
D10

D9
D9

D8
D8

D7
D7

D6
D6

D5
D5

D4
D4

D3
D3

D2
D2

GND
GND

RST
RST

RX
RX1

TX
TX1

+5V
+5V

RST.
RST.

GND.
GND.

A5
A5

A4
A4

A3
A3

A2
A2

A1
A1

A0
A0

NC.
NC.

NC
NC

REF
REF

3V3
3V3

D13
D13

<
U
S
B
>
G
N
D

<
U
S
B
>
G
N
D

<
U
S
B
>
D
-

<
U
S
B
>
D
-

<
U
S
B
>
D
+

<
U
S
B
>
D
+

<
U
S
B
>
+
V

<
U
S
B
>
+
V

VIN
VIN

SS
SS

MOSI
MOSI

MISO
MISO]

SCK
SCK

<
U
S
B
>
ID

<
U
S
B
>
ID

G
N
D

G
N
D

G
N
D

G
N
D

GND

GND

GND

GND

GND

GND

G
N
D

5
V

5V

5
V

5V

V
O

V
O

D
1
2

D12

D
1
1

D11

D
5

D5

D6

D6

D7

D7

D8

D8

MODULE0
MODULE0

MODULE1

MODULE1

MODULE2

MODULE2

MODULE3
MODULE3

MODULE4
MODULE4

MODULE5

MODULE5
MODULE6

MODULE6

MODULE7
MODULE7

MISO

MISO

SCK

SCK

MOSI

MOSI

D
4

D4

D
3

D3

D
2

D2

D9

D9

&

0

2

G
0

7
-

DMUX

0

1

2

3

4

5

6

7

A
R
D
U
IN
O

ICSP

M
IC
R
O

66

LM324N

LM324N

LM324NLM324N

2
5
0

200K

200K

2
0
0
K

200K

MCP3208-CI/P

.33uF

7805T

10uF

.1
u
F

1uF

1
M

.1
u
F

1
u
F

IC1A

2

3
1

IC1B

6

5
7

IC1C

9

10
8

IC1D

13

12
14

R
1

SW1

9
10
11
12
13
14
15
161

2
3
4
5
6
7
8

R2

R3

R
4

R5

VDD
16

VREF
15

~CS/SHDN
10

DIN
11

CLK
13

CH0
1

CH1
2

CH2
3

CH3
4

CH4
5

CH5
6

CH6
7

CH7
8

DGND
9

AGND
14

DOUT
12

U$1

VCC
1

PB0
2

PB1
3

PB3
4

PB2
5

PA7
6

PA6
7

GND
14

PA0
13

PA1
12

PA2
11

PA3
10

PA4
9

PA5
8

C20

IC10

GND

VI
1

2

VO
3

C1

C
3

C11

R
4
1

4 11

JP1

1
2
3

JP2

1
2
3

JP3

1
2
3

JP4

1
2
3

JP5

1
2
3

JP6

1
2
3

JP7

1
2
3

JP8

1
2
3

C
1
0

C
1
2

IN0

IN0

RTN0

RTN0

IN1

RTN1

IN2

RTN2

IN3

RTN3

IN4

RTN4

IN5

RTN5

IN6

RTN6

IN7

RTN7

DIPI_0

DIPI_0

DIPO_0

DIPO_0

DIPI_7 DIPO_7

DIPI_6 DIPO_6

DIPO_4DIPI_4

DIPI_3

DIPI_2

DIPI_1

DIPI_5

DIPO_1

DIPO_2

DIPO_3

DIPO_5

ADC_CH0

ADC_CH0

ADC_CH1

ADC_CH2

ADC_CH3

ADC_CH4

ADC_CH5

ADC_CH6

ADC_CH7

GND

GND

G
N

D

G
N

D

G
N

D

G
N

D

GND

GND

GND

GND

GND

GND

GND

GND

GND

24V

24V

24V

CS_ADC

CS_ADC

MISO_A

MISO_A

MOSI_A

MOSI_A

SCK_A

SCK_A

CS_A

CS_A

MISO_ADC

MISO_ADC

MOSI_ADC

MOSI_ADC

SCK_ADC

SCK_ADC

5V

5V

5V

5V

O
N

1
2

3
4

5
6

7
8

A
tt

in
y4

4

Screw Termanl for Arduino SPI

x 8

A.2 Analog Input Module

67

V
re

fA

V
re

fB

VoutA

SHDN

VoutB

V
D

D

V
S
S

SCK

SDI

CS

LDAC

1

3
4

5
8

9
1
0

1
11
2

1
3

1
4

LM324N

LM324N

200K

47nF200K
10K

200K

200K
10K

47nF

1
5

15

10nF

1
5

15

10nF

.33uF

7805T

.1uF
1
0
u
F

.33uF

7805T

.1
u
F

.1
u
F

5K5K

.1
u
F

SW1

9
10
11
12
13
14
15
161

2
3
4
5
6
7
8

VSP
1

IS
2

VG
3

REGS
4

REGF
5

GND
10

OD
9

EF
8

SET
7

VIN
6

VSP
1

IS
2

VG
3

REGS
4

REGF
5

GND
10

OD
9

EF
8

SET
7

VIN
6

IC1A

2

3
1

IC1B

6

5
7

R1

C1R2
R3

X
1

R4

R5
R6

C2

R
2
5

R26

Q1

C9

R
2
7

R28

Q2

C10

VCC
1

PB0
2

PB1
3

PB3
4

PB2
5

PA7
6

PA6
7

GND
14

PA0
13

PA1
12

PA2
11

PA3
10

PA4
9

PA5
8

C17

IC3

GND

VI
1

2

VO
3

C19
C
2
1

C20

IC4

GND

VI
1

2

VO
3

C
2
2

C
1
8

R47R48

4 11

JP1

1
2
3

JP2

1
2
3

JP3

1
2
3

JP4

1
2
3

JP5

1
2
3

JP6

1
2
3

JP7

1
2
3

JP8

1
2
3

C
3
5

Q3 Q5

GND G
N

D

G
N

D

G
N

D

G
N

DGND

GND

G
N

D
GND

GND

GND

GND

G
N

D

GND

GND

GND

G
N

D

G
N

D
G

N
D

GND

GND

GND

GND

GND

GND

GND

V1

V1

V1

V2

V3

V4

V5

V6

V7

24V

24V

24V 24V

24V

24V

CS0

CS0

CS1

CS2

CS3

I0

I0

I0

I2

I2

I4

I4

I3

I3

I5

I5

I6

I6

I7

I7

I1

I1

I1

V0_S

V0_S

V1_S

V1_S

V3_S

V5_S

V7_S

V6_S

V4_S

V2_S

MOSI_DAC

MOSI_DAC

SCK_DAC

SCK_DAC

5V_VDD

5V_VDD

5V_VDD

5V_VREF

5
V
_
V
R
E
F

5V_VREF

V0

V0

V0

CS_A
CS_A

MOSI_AMOSI_A

SCK_A

SCK_A

MISO_A

MISO_A

O
N

1
2

3
4

5
6

7
8

Current Converter XTR111 Current Converter XTR111

A
tt

in
y4

4

Screw Termanl for Arduino SPI

x 4

A.3 Analog Output Module

68

.33uF

7805T

39K

1
0
K

39K

1
0
K

39K

1
0
K

39K

1
0
K

39K

1
0
K

39K

1
0
K

39K

1
0
K

LM324N

LM324N

LM324N

LM324N

LM324N

LM324N

LM324N

LM324N

.1
u
F

VCC
1

PB0
2

PB1
3

PB3
4

PB2
5

PA7
6

PA6
7

GND
14

PA0
13

PA1
12

PA2
11

PA3
10

PA4
9

PA5
8

C17

IC0

GND

VI
1

2

VO
3

R0

R
1

R2

R
3

R4

R
5

R6

R
7

R8

R
9

R10

R
1
1

R12

R
1
3

IC1A

2

3
1

IC1B

6

5
7

IC1C

9

10
8

IC1D

13

12
14

IC2A

2

3
1

IC2B

6

5
7

IC2C

9

10
8

IC2D

13

12
14

JP1

1
2
3

JP2

1
2
3

JP3

1
2
3

JP4

1
2
3

JP5

1
2
3

C
3
5

4 11

4 11

24V

24V

24V

24V

5V

5V

CS_A

CS_A

MISO_A

MISO_A

MOSI_A

MOSI_A

SCK_A

GND

G
N
D

GND

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

GND

GND

GND

GND

DI0

DI0

DI1

DI1

DI2

DI2

DI3

DI3

DI4

DI4

DI5

DI5

DI6

DI6

DI0_PLC

DI0_PLC

DI1_PLC

DI1_PLC

DI2_PLC

DI2_PLC

DI3_PLC

DI3_PLC

DI4_PLC

DI4_PLC

DI6_PLC

DI6_PLC

DI5_PLC

DI5_PLC

A
tt
in

y4
4

A.4 Digital Input Module

69

.33uF

7805T

10K

10K

1
0
K

10K

10K

1
0
K

10K

10K

1
0
K

10K

10K

1
0
K

10K

10K

1
0
K

10K

10K

1
0
K

10K

10K

1
0
K

.1
u
F

VCC
1

PB0
2

PB1
3

PB3
4

PB2
5

PA7
6

PA6
7

GND
14

PA0
13

PA1
12

PA2
11

PA3
10

PA4
9

PA5
8

C17

IC3

GND

VI
1

2

VO
3

NPN0

Q0

R0

R1 R
2

NPN1

Q1

R4

R5 R
6

NPN2

Q2

R8

R9 R
1
0

NPN3

Q3

R12

R13 R
1
4

NPN4

Q4

R16

R17 R
1
8

NPN5

Q5

R20

R21 R
2
2

NPN6

Q6

R24

R25 R
2
6

JP2

1
2
3

JP3

1
2
3

JP4

1
2
3

JP5

1
2
3

JP1

1
2
3

C
3
5

24V

24V

24V

24V

24V

24V

24V

24V

24V

5V

5V

DO0

DO0

DO1

DO1

CS_A

CS_A

MISO_A

MISO_A

MOSI_A

MOSI_A

SCK_A

SCK_A

DO2

DO2

DO3

DO3

DO4

DO4

DO5

DO5

DO6

DO6

G
N
D

GND

GND

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

G
N
D

GND

DO0_PLC

DO0_PLC

DO1_PLC

DO1_PLC

DO3_PLC

DO3_PLC

DO6_PLC

DO6_PLC

DO5_PLC

DO5_PLC

DO4_PLC

DO4_PLC

DO2_PLC

DO2_PLC

A
tt
in
y4

4

A.5 Digital Output Module [28]

70

Appendix B. Microcontroller Code

Codes for microcontrollers are written using the open source Arduino Software.

B.1 CPU Module

//#include <SPI.h>
#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
#define ID_AI 0x52
#define ID_DI 0x53
#define ID_AO 0x54
#define ID_DO 0x55
#define NUM_MODULES 4
#define MOSI_PIN MOSI
#define MISO_PIN MISO
#define SCK_PIN SCK
#define DEMUX_A0 6
#define DEMUX_A1 7
#define DEMUX_A2 8
#define DEMUX_E3 9
#define HB_CMD 0b10101010
#define RDA_CMD 0b01110000
#define WDA_CMD 0b01000000
#define DEFAULT_DELAY 1000
byte module_types[NUM_MODULES];
byte count = 0;
//assign slots
//analog input module in slot 0
byte slotADC = 0;
//digital input module in slot 1
byte slotDI = 1;
//analog output module in slot 2
byte slotDAC = 2;
//digital ouput module in slot 3
byte slotDO = 3;
byte ID;
unsigned short ai_values[8];
unsigned short ao_values[8];
bool di_values[8];
bool do_values[8];
unsigned long last_time;

71

unsigned long timestamp;
char input;
char type;
char comma;
char comma2;
char newline;
int channel;
int slot;
int value;
float a_value;

void setup() {
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 // Print a message to the LCD.
 lcd.print("hello, world!");
 // put your setup code here, to run once:
 pinMode(MOSI_PIN, OUTPUT);
 pinMode(MISO_PIN, INPUT);
 pinMode(SCK_PIN, OUTPUT);
 pinMode(DEMUX_A0, OUTPUT);
 pinMode(DEMUX_A1, OUTPUT);
 pinMode(DEMUX_A2, OUTPUT);
 pinMode(DEMUX_E3, OUTPUT);
 digitalWrite(DEMUX_E3, LOW);
 // This makes the clock rising edge
 digitalWrite(SCK_PIN, LOW);
 Serial.begin(57600);
 enumerate_modules();
}

void loop(){
 unsigned long newtime;
 //HB_CMD check
 if (count == 0) {
 enumerate_modules();

72

 }
 count++;
 if (count >= 100) {
 count = 0;
 }

 update_values();
 // This code measures the amount of time between updating
the current values
 // This should give us some indication of how fast our
response time will be
 newtime = millis();
 last_time = newtime - timestamp;
 timestamp = newtime;

 if(Serial.available()){
 input = Serial.read();
 switch(input){
 case 'M':
 newline = Serial.read();
 if(newline != '\n'){
 Serial.println("Invalid Syntax");
 break;
 }
 print_modules();

Serial.println('.');
 break;
 case 'T':
 newline = Serial.read();
 if(newline != '\n'){
 Serial.println("Invalid Syntax");
 break;
 }
 Serial.println(last_time);
 break;
 case 'R':

73

 type = Serial.read();
//slot = Serial.parseInt();
//comma = Serial.read();

 channel = Serial.parseInt();
 newline = Serial.read();
 if(newline != '\n'){
 Serial.println("Invalid Syntax");
 break;
 }
 if(type == 'D'){
 if(channel > 6){
 Serial.println("Channel out of range");
 break;
 }
 Serial.print("rd");
 Serial.print(channel);
 Serial.print(',');
 Serial.println(di_values[channel]);
 }
 else if(type == 'A'){
 if(channel > 8){
 Serial.println("Channel out of range");
 break;
 }
 Serial.print("ra");
 Serial.print(channel);
 Serial.print(',');
 Serial.println(ai_values[channel]);
 }
 else{
 Serial.println("UNKOWN TYPE");
 serialFlush();
 }
 break;
 case 'W':
 type = Serial.read();

74

 channel = Serial.parseInt();
 comma = Serial.read();
 value = Serial.parseInt();
 newline = Serial.read();
 if(comma != ',' || newline != '\n'){
 Serial.println("Invalid Syntax");
 break;
 }
 if(type == 'D'){
 if(value > 1){
 Serial.println("Value must be either 0 or 1");
 break;
 }
 WD(get_slot(ID_DO), channel, value);
 Serial.print("wd");
 Serial.print(channel);
 Serial.print(",");
 Serial.println(value);
 }
 else if(type == 'A'){
 if(value > 4095){
 Serial.println("Value must be less than 4096");
 break;
 }
 WA(get_slot(ID_AO), channel, value);
 Serial.print("wa");
 Serial.print(channel);
 Serial.print(",");
 Serial.println(value);
 }
 else{
 Serial.println("UNKOWN TYPE");
 serialFlush();
 }
 break;
 }

75

 }
}

// https://forum.arduino.cc/index.php?topic=234151.0
void serialFlush(){
 while(Serial.available()) {
 Serial.read();
 }
}

void update_values(){
 for(byte i=0; i < NUM_MODULES; i++){
 switch(module_types[i]){
 case ID_AI:
 update_AI(i);
 break;
 case ID_DI:
 update_DI(i);
 break;
 /*
 case ID_AO:
 update_AO(i);
 break;
 case ID_DO:
 update_DO(i);
 break;
 */
 }
 }
}

void update_AI(byte slot){
 for(int i=0; i < 8; i++){
 ai_values[i] = RA(slot, i);
 }
}

76

void update_DI(byte slot){
 byte vals = RDA(slot);
 for(byte i=0; i < 8; i++){
 di_values[i] = (vals >> (7-i)) & 1;
 }
}

// This helper function returns the slot number of the first
// module that matches the given ID
byte get_slot(byte id){
 for(byte slot=0; slot < NUM_MODULES; slot++){
 if(module_types[slot] == id){
 return slot;
 }
 }
 return 0xFF;
}

void enumerate_modules(){
 for(byte i=0; i < NUM_MODULES; i++){
 module_types[i] = sendHB_CMD(i);
 if(! ((module_types[i] >= ID_AI && module_types[i] <=
ID_DO) || module_types[i] == 0)){
 Serial.print("Unexpected module type (");
 Serial.print(module_types[i]);
 Serial.print(") found on slot: ");
 Serial.println(i);
 }
 }
}

void print_modules(){
 for(byte i=0; i < NUM_MODULES; i++){
 Serial.print("Slot # ");
 Serial.print(i);

77

 Serial.print(": ");
 switch(module_types[i]){
 case ID_AI:
 Serial.println("Analog Input");
 break;
 case ID_DI:
 Serial.println("Digital Input");
 break;
 case ID_AO:
 Serial.println("Analog Output");
 break;
 case ID_DO:
 Serial.println("Digital Output");
 break;
 default:
 Serial.println("Empty");
 break;
 }
 }
}

void print_test(){
 //ADC
 byte channelADC0 = 7;
 unsigned short ADC_value0 = RA(slotADC, channelADC0);
 Serial.print("ADC Value 0: ");
 Serial.println(ADC_value0);
 //delay(1000);
 //Digital Input
 byte channelDI0 = 1;
 byte DI_value0 = RD(slotDI, channelDI0);
 byte DI_values = RDA(slotDI);
 Serial.print("DI: ");
 Serial.println(DI_value0);
 Serial.print("DIs: ");
 Serial.println(DI_values);

78

 //delay(1000);
 //DAC
 //channel from 0 to 7, total 8 channels
 byte channelDAC1 = 1;
 //with channel and first 4 bits, first bit is 0
 byte byte0_DAC1 = 4;
 //8 lower data bits
 byte byte1_DAC1 = 0;
 //write the anlaog values to DAC
 byte DAC_channel = WA (slotDAC, channelDAC1, byte0_DAC1,
byte1_DAC1);
 Serial.print("DAC channel: ");
 Serial.println(DAC_channel);
 //delay(1000);
 // digital ouput
 //get a single digital value to write
 byte DO5 = 1;
 //get all dital values to write, MSB first, starting with
channel 0
 byte DOs = 0b11110000;
 byte DO_channel = WD (slotDO, 5, DO5);
 byte DO_all = WDA (slotDO, DOs);
 delay(1000);
 Serial.print("DO channel: ");
 Serial.println(DO_channel);
 Serial.print("DO all: ");
 Serial.println(DO_all);
}

void selectSlot (byte slot){
digitalWrite(DEMUX_A2, (slot >> 2) & 1);
digitalWrite(DEMUX_A1, (slot >> 1) & 1);
digitalWrite(DEMUX_A0, slot & 1);
digitalWrite(DEMUX_E3, HIGH);

}

79

void disableSlot(){
digitalWrite(DEMUX_E3, LOW);

}

void send_cmd(byte slot, byte data){
selectSlot(slot);
delayMicroseconds(DEFAULT_DELAY);
shiftOut(MOSI_PIN, SCK_PIN, MSBFIRST, data);

}

void send_cmd(byte slot, byte data1, byte data2){
selectSlot(slot);
delayMicroseconds(DEFAULT_DELAY);
shiftOut(MOSI_PIN, SCK_PIN, MSBFIRST, data1);
delayMicroseconds(DEFAULT_DELAY);
shiftOut(MOSI_PIN, SCK_PIN, MSBFIRST, data2);

}

byte recv(bool disable_slot=true){
byte ID = shiftIn(MISO_PIN, SCK_PIN, MSBFIRST);
if(disable_slot){

disableSlot();
}
return ID;

}

byte sendHB_CMD(byte slot){
 byte resp;
 send_cmd(slot, HB_CMD);
 delayMicroseconds(DEFAULT_DELAY);
 resp = recv();
 return resp;
}

unsigned short RA(byte slot, byte channel){
 unsigned short dataADC;

80

 send_cmd(slot, channel);
 //time needed for ATTINY to bring data from the selected ADC
channel
 //~~9 ms required for the readADC function to finish
 delayMicroseconds(DEFAULT_DELAY);//give extra 11 ms
 //read first byte
 dataADC = recv(false);
 //time needed for next byte to be in USIDR
 delayMicroseconds(DEFAULT_DELAY);
 dataADC = (dataADC << 8) | recv();
 return dataADC;
}

byte RD (byte slot, byte channel){
 byte dataDI;

send_cmd(slot, channel);
//time needed for ATTINY to bring data from the selected DI

channel
 delayMicroseconds(DEFAULT_DELAY);

dataDI = recv();
 return dataDI;
}

byte RDA (byte slot){
 byte dataDI_A;

send_cmd(slot, RDA_CMD);
delayMicroseconds(DEFAULT_DELAY);

 dataDI_A = recv();
 return dataDI_A;
}

// is_current is 0 for Volts, 1 for Amps
byte WA(byte slot, byte channel, float value, bool
is_current){
 unsigned short val;
 // This means Current, 0.0 - 20.0

81

 if(is_current){
 val = (unsigned short)(4095.0 * value / 20.0);
 }
 else{
 // This is volts!
 val = (unsigned short)(4095.0 * value / 10.0);
 }
 return WA(slot, channel, val);
}

byte WA(byte slot, byte channel, unsigned short value){
 return WA(slot, channel, highByte(value), lowByte(value));
}

byte WA(byte slot, byte channel, byte value0, byte value1){
 byte cmd;
 //combine channel information and first 4 bits in the first
byte
 //firt bit is 0
 cmd = (channel << 4) | value0;
 send_cmd(slot, cmd, value1);
 delayMicroseconds(5000);
 // ATTINY must return a byte acknowledging that the write
command was successful
 // ATTINY should send the channel that was written
 return recv();
}

byte WD (byte slot, byte channel, byte value) {
 //combine channel information and digital value
 byte cmd = (channel << 1) | value;
 send_cmd(slot, cmd);
 //time needed for ATTINY to do digitalRead
 delayMicroseconds(DEFAULT_DELAY);
 // ATTINY must return a byte acknowledging that the write
command was successful

82

 // ATTINY should send the channel that was written
 return recv();
}

byte WDA (byte slot, byte values){
 byte cmd1 = WDA_CMD | (values >> 2);

byte cmd2 = values << 6;
send_cmd(slot, cmd1, cmd2);
delayMicroseconds(DEFAULT_DELAY);

 // ATTINY must return a byte acknowledging that the write
command was successful
 // ATTINY should send 10 when write command all was
successful

return recv();
}

83

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/power.h>
#include <avr/sleep.h>
//set bit in I/O register
#ifndef cbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) //OR
#endif
//clear bit in I/O register
#ifndef sbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) //AND
#endif
#define MOSI_A 6
#define MISO_A 5
#define SCK_A 4
#define CS_A PCINT7
#define SCK_ADC 10
#define MISO_ADC 9
#define CS_ADC 8
#define MOSI_ADC 0
#define NUM_CHANNELS 8
unsigned short current_values[NUM_CHANNELS];

// the setup function runs once when you press reset or power
the board
void setup() {
 cli();//Global Interrupt Disable, disable interrupts during
setup
 pinMode(MOSI_A, INPUT);
 //change to input for MISO_A to make it high impedance
 pinMode(MISO_A, INPUT);
 pinMode(SCK_A, INPUT);
 pinMode(CS_A, INPUT);
 pinMode(MOSI_ADC, OUTPUT);
 pinMode(MISO_ADC, INPUT);
 pinMode(SCK_ADC, OUTPUT);

B.2 Analog Input Module

84

 pinMode(CS_ADC, OUTPUT);
 //Clock idles at low, 0 mode
 digitalWrite(SCK_ADC, LOW);
 digitalWrite(CS_ADC, HIGH);
 sbi(GIMSK,PCIE0); // Turn on Pin Change interrupt
 sbi(PCMSK0,CS_A); // Which pins are affected by the interrup
 spiSlaveInit();
 clear_values();
 sei(); //last line of setup - enable interrupts after setup
}

// the loop function runs over and over again forever
void loop() {
 update_values();
}

ISR(PCINT0_vect) {
 if ((USISR >> USIOIF) & 1){
 resetCounter();
 }
 byte pinState = digitalRead(CS_A);//gives PORTA7 value,
PCINT7
 if (!pinState) {
 //wait until 16 edges to finish 8 bit transfer for shiftOu
 //make sure USIDR is full with ADC channel information
 //ensure USIOIF is 0 before while loop
 //make MISO output mode to transmit data to Arduino Micro
 pinMode(MISO_A, OUTPUT);
 while(!((USISR >> USIOIF) & 1));
 //write one bit to USIOIF
 resetCounter();
 byte channel = USIDR;
 if (((channel >> 7) & 1) == 1){
 USIDR = 0x52;
 }
 else {

85

 //read digital number from the ADC, take some time
 unsigned short dataBytes = current_values[channel];
 byte dataBytes0 = highByte(dataBytes);
 byte dataBytes1 = lowByte(dataBytes);
 USIDR = dataBytes0;
 //wait until first shiftIn is done
 while(!((USISR >> USIOIF) & 1));
 resetCounter();
 //write for the second shiftIn
 USIDR = dataBytes1;
 }
 }
 else{
 //make MISO input
 pinMode(MISO_A, INPUT);
 }
}

void clear_values(){
 for(int i=0; i < NUM_CHANNELS; i++){
 current_values[i] = 0;
 }
}

void update_values(){
 for(int i=0; i < NUM_CHANNELS; i++){
 current_values[i] = readADC(i);
 //delay(1);
 }
}

unsigned short readADC(byte channel){
 unsigned short RequestBytes = (0b00011000 + channel) << 6;
 //noInterrupts();
 digitalWrite(CS_ADC, LOW);
 ytransfer(MOSI_ADC, MISO_ADC, SCK_ADC, MSBFIRST,

86

highByte(RequestBytes));
 byte data0 = ytransfer(MOSI_ADC, MISO_ADC, SCK_ADC,
MSBFIRST, lowByte(RequestBytes));
 byte data1 = ytransfer(MOSI_ADC, MISO_ADC, SCK_ADC,
MSBFIRST, 0x00);
 digitalWrite(CS_ADC, HIGH);
 //interrupts();
 data0 &= 0b00001111;
 unsigned short bitsADC = (((unsigned short)data0) << 8) |
data1;
 return bitsADC;
}

void resetCounter(){
 USISR = 1 << USIOIF;
}

// Initialise as SPI slave
void spiSlaveInit()
{
 USICR = (1 << USIWM0) // SPI mode
 |(0 << USIWM1) // Three Wire Mode
 |(1 << USICS1); // Clock is external
}

byte ytransfer(uint8_t MOSI, uint8_t MISO, uint8_t clockPin,
uint8_t bitOrder, byte val)
{
 int i;
 byte data = 0;
 for (i = 0; i < 8; i++) {
 if (bitOrder == LSBFIRST){
 digitalWrite(MOSI, !!(val & (1 << i)));
 data |= digitalRead(MISO) << i;
 }
 else{

87

 digitalWrite(MOSI, !!(val & (1 << (7 - i))));
 data |= digitalRead(MISO) << (7 - i);
 }
 digitalWrite(clockPin, HIGH);
 digitalWrite(clockPin, LOW);
 }
 return data;
}

88

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/power.h>
#include <avr/sleep.h>
//set bit in I/O register
#ifndef cbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) //OR
#endif
//clear bit in I/O register
#ifndef sbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) //AND
#endif
#define CS_A PCINT7
#define MOSI_A 6
#define MISO_A 5
#define SCK_A 4
#define SCK_DAC 10
#define MOSI_DAC 9
#define CS_DAC0 0
#define CS_DAC1 1
#define CS_DAC2 2
#define CS_DAC3 3

// the setup function runs once when you press reset or power
the board
void setup() {
 cli();//Global Interrupt Disable, disable interrupts during
setup
 pinMode(MOSI_A, INPUT);
 //change to input for MISO_A to make it high impedance
 pinMode(MISO_A, INPUT);
 pinMode(SCK_A, INPUT);
 pinMode(CS_A, INPUT);
 pinMode(MOSI_DAC, OUTPUT);
 pinMode(SCK_DAC, OUTPUT);
 pinMode(CS_DAC0, OUTPUT);

B.3 Analog Output Module

89

 pinMode(CS_DAC1, OUTPUT);
 pinMode(CS_DAC2, OUTPUT);
 pinMode(CS_DAC3, OUTPUT);
 //Clock idles at low, 0 mode
 digitalWrite(SCK_DAC, LOW);
 digitalWrite(CS_DAC0, HIGH);
 digitalWrite(CS_DAC1, HIGH);
 digitalWrite(CS_DAC2, HIGH);
 digitalWrite(CS_DAC3, HIGH);
 sbi(GIMSK,PCIE0); // Turn on Pin Change interrupt
 sbi(PCMSK0,CS_A); // Which pins are affected by the interrup
 spiSlaveInit();
 sei(); //last line of setup - enable interrupts after setup
}

// the loop function runs over and over again forever
void loop() {}
ISR(PCINT0_vect) {
 if ((USISR >> USIOIF) & 1){
 resetCounter();
 }
 byte pinState = digitalRead(CS_A);//gives PORTA7 value,
PCINT7
 if (!pinState) {
 //make MISO output mode to transmit data to Arduino Micro
 pinMode(MISO_A, OUTPUT);
 while(!((USISR >> USIOIF) & 1)){
 }
 resetCounter();//write one bit to USIOIF
 unsigned short command = USIDR;
 if (((command >> 7) & 1) == 1){
 USIDR = 0x54;
 }
 else{
 while(!((USISR >> USIOIF) & 1));
 resetCounter();

90

 byte dataByte = USIDR;
 //combine data to send to DAC
 byte channel = command >> 4;
 unsigned short data = ((command & 0b00001111) << 8) |
dataByte;
 //takes time for this function
 sendtoDAC(data, channel);
 USIDR = channel;
 }
 }
 else{
 //make MISO input
 pinMode(MISO_A, INPUT);
 }
}

void resetCounter(){
 USISR = 1 << USIOIF;
}

// Initialise as SPI slave
void spiSlaveInit()
{
 USICR = (1 << USIWM0) // SPI mode
 |(0 << USIWM1) // Three Wire Mode
 |(1 << USICS1); // Clock is external
}

void sendtoDAC (unsigned short value, byte addr){
 byte CS;
 if ((addr == 0)||(addr == 1)){
 CS = CS_DAC0;
 }
 if ((addr == 2)||(addr == 3)){
 CS = CS_DAC1;
 }

91

 if ((addr == 4)||(addr == 5)){
 CS = CS_DAC2;
 }
 if ((addr == 6)||(addr == 7)){
 CS = CS_DAC3;
 }
 byte defaultfirstByte = 0b00110000;
 byte firstByteData = highByte(value)| defaultfirstByte;
 byte secondByteData = lowByte(value);
 byte channelBit = (addr & 1) << 7;//0 is channel 0, 1 is
channel 1
 byte firstByteDAC = channelBit | firstByteData;
 byte secondByteDAC = secondByteData;
 noInterrupts();
 digitalWrite (CS, LOW);
 shiftOut(MOSI_DAC, SCK_DAC, MSBFIRST, firstByteDAC);
 shiftOut(MOSI_DAC, SCK_DAC, MSBFIRST, secondByteDAC);
 digitalWrite (CS, HIGH);
 interrupts();
 }

92

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/power.h>
#include <avr/sleep.h
//set bit in I/O register
#ifndef cbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) //OR
#endif
//clear bit in I/O register
#ifndef sbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) //AND
#endif
#define CS_A PCINT7
#define MOSI_A 6
#define MISO_A 5
#define SCK_A 4
#define DI0 10
#define DI1 9
#define DI2 8
#define DI3 0
#define DI4 1
#define DI5 2
#define DI6 3
#define NUM_CHANNELS 7
byte current_values[NUM_CHANNELS];

// the setup function runs once when you press reset or power
the board
void setup() {
 cli();//Global Interrupt Disable, disable interrupts during
setup
 pinMode(MOSI_A, INPUT);
 //change to input for MISO_A to make it high impedance
 pinMode(MISO_A, INPUT);
 pinMode(SCK_A, INPUT);
 pinMode(CS_A, INPUT);

B.4 Digital Input Module

93

 pinMode(DI0, INPUT);
 pinMode(DI1, INPUT);
 pinMode(DI2, INPUT);
 pinMode(DI3, INPUT);
 pinMode(DI4, INPUT);
 pinMode(DI5, INPUT);
 pinMode(DI6, INPUT);
 sbi(GIMSK,PCIE0); // Turn on Pin Change interrupt
 sbi(PCMSK0,CS_A); // Which pins are affected by the interrup
 spiSlaveInit();
 sei(); //last line of setup - enable interrupts after setup
}

// the loop function runs over and over again forever
void loop() {
 update_values();
}

ISR(PCINT0_vect) {
 if ((USISR >> USIOIF) & 1){
 resetCounter();
 }
 byte pinState = digitalRead(CS_A);//gives PORTA7 value,
PCINT7
 if (!pinState) {
 //make MISO output mode to transmit data to Arduino Micro
 pinMode(MISO_A, OUTPUT);
 while(!((USISR >> USIOIF) & 1));
 resetCounter();
 byte cmd = USIDR;
 //if Hearbeat ID
 if (((cmd >> 7) & 1) == 1){
 USIDR = 0x53;
 }
 else if ((cmd >> 6) == 1){
 byte DIs;

94

 DIs = (current_values[0] << 7)
 |(current_values[1] << 6)
 |(current_values[2] << 5)
 |(current_values[3] << 4)
 |(current_values[4] << 3)
 |(current_values[5] << 2)
 |(current_values[6] << 1);
 USIDR = DIs;
 }
 else{
 USIDR = current_values[cmd];
 }
 }
 else{
 //make MISO input
 pinMode(MISO_A, INPUT);
 }
}

void resetCounter(){
 USISR = 1 << USIOIF;
}

void spiSlaveInit()
{
 USICR = (1 << USIWM0) // SPI mode
 |(0 << USIWM1) // Three Wire Mode
 |(1 << USICS1); // Clock is external
}

byte readDI (byte addr){
 byte DI;
 if (addr == 0){
 DI = digitalRead(DI0);
 }
 if (addr == 1){

95

 DI = digitalRead(DI1);
 }
 if (addr == 2){
 DI = digitalRead(DI2);
 }
 if (addr == 3){
 DI = digitalRead(DI3);
 }
 if (addr == 4){
 DI = digitalRead(DI4);
 }
 if (addr == 5){
 DI = digitalRead(DI5);
 }
 if (addr == 6){
 DI = digitalRead(DI6);
 }
 return DI;
}

void update_values(){
 for(int i=0; i < NUM_CHANNELS; i++){
 current_values[i] = readDI(i);
 //delay(1);
 }
}

96

#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/power.h>
#include <avr/sleep.h>
//set bit in I/O register
#ifndef cbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit)) //OR
#endif
//clear bit in I/O register
#ifndef sbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit)) //AND
#endif
#define CS_A PCINT7
#define MOSI_A 6
#define MISO_A 5
#define SCK_A 4
#define DO0 10
#define DO1 9
#define DO2 8
#define DO3 0
#define DO4 1
#define DO5 2
#define DO6 3

// the setup function runs once when you press reset or power
the board
void setup() {
 cli();//Global Interrupt Disable, disable interrupts during
setup
 pinMode(MOSI_A, INPUT);
 //change to input for MISO_A to make it high impedance
 pinMode(MISO_A, INPUT);
 pinMode(SCK_A, INPUT);
 pinMode(CS_A, INPUT);
 pinMode(DO0, OUTPUT);
 pinMode(DO1, OUTPUT);

B.5 Digital Output Module

97

 pinMode(DO2, OUTPUT);
 pinMode(DO3, OUTPUT);
 pinMode(DO4, OUTPUT);
 pinMode(DO5, OUTPUT);
 pinMode(DO6, OUTPUT);
 sbi(GIMSK,PCIE0); // Turn on Pin Change interrupt
 sbi(PCMSK0,CS_A); // Which pins are affected by the interrup
 spiSlaveInit();
 sei(); //last line of setup - enable interrupts after setup
}

// the loop function runs over and over again forever
void loop() {}
ISR(PCINT0_vect) {
 //if ((USISR >> USIOIF) & 1){
 resetCounter();
 //}
 byte pinState = digitalRead(CS_A);//gives PORTA7 value,
PCINT7
 if (!pinState) {
 //make MISO output mode to transmit data to Arduino Micro
 pinMode(MISO_A, OUTPUT);
 while(!((USISR >> USIOIF) & 1));
 byte cmd1 = USIDR;
 //if Hearbeat ID
 if (((cmd1 >> 7) & 1) == 1){
 USIDR = 0x55;
 }
 else {
 if ((cmd1 >> 6) == 1){
 resetCounter();
 while(!((USISR >> USIOIF) & 1));
 byte cmd2 = USIDR;
 byte DOs = (cmd1 << 2) | (cmd2 >> 6);
 //to indicate the completion of write all
 digitalWrite(DO0, (DOs >> 7) & 1);

98

 digitalWrite(DO1, (DOs >> 6) & 1);
 digitalWrite(DO2, (DOs >> 5) & 1);
 digitalWrite(DO3, (DOs >> 4) & 1);
 digitalWrite(DO4, (DOs >> 3) & 1);
 digitalWrite(DO5, (DOs >> 2) & 1);
 digitalWrite(DO6, (DOs >> 1) & 1);
 USIDR = 10;
 }
 else{
 writeDO(cmd1);
 }
 }
 }
 else{
 //make MISO input
 pinMode(MISO_A, INPUT);
 }
}

void resetCounter(){
 USISR = 1 << USIOIF;
}

void spiSlaveInit()
{
 USICR = (1 << USIWM0) // SPI mode
 |(0 << USIWM1) // Three Wire Mode
 |(1 << USICS1); // Clock is external
}

void writeDO (byte channel_value){
 byte addr = channel_value >> 1;
 byte value = channel_value & 1;
 if (addr == 0){
 digitalWrite(DO0, value);
 USIDR = 0;

99

 }
 else if (addr == 1){
 digitalWrite(DO1, value);
 USIDR = 1;
 }
 else if (addr == 2){
 digitalWrite(DO2, value);
 USIDR = 2;
 }
 else if (addr == 3){
 digitalWrite(DO3, value);
 USIDR = 3;
 }
 else if (addr == 4){
 digitalWrite(DO4, value);
 USIDR = 4;
 }
 else if (addr == 5){
 digitalWrite(DO5, value);
 USIDR = 5;
 }
 else {
 digitalWrite(DO6, value);
 USIDR = 6;
 }
}

100

Appendix C. Simulation code for WWTP stages

function varargout = screen_GUI_resizedS2(varargin)
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @screen_GUI_resizedS2_OpeningFcn,
...
 'gui_OutputFcn', @screen_GUI_resizedS2_OutputFcn,
...
 'gui_LayoutFcn', [], ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end

function screen_GUI_resizedS2_OpeningFcn(hObject, eventdata, handles,
varargin)
handles.output = hObject;
guidata(hObject, handles);

function varargout = screen_GUI_resizedS2_OutputFcn(hObject, eventdata,
handles)
varargout{1} = handles.output;

function init_S1_Callback(hObject, eventdata, handles)
init_S1 = get(hObject,'Value');
assignin('base','init_S1',init_S1)
set(handles.init_S1Num,'String',num2str(init_S1))

function init_S1_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function init_Clog_Callback(hObject, eventdata, handles)
init_Clog = get(hObject,'Value');
assignin('base','init_Clog',init_Clog)
set(handles.init_ClogNum,'String',num2str(init_Clog))

function init_Clog_CreateFcn(hObject, eventdata, handles)

101

if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function init_S2_Callback(hObject, eventdata, handles)
init_S2 = get(hObject,'Value');
assignin('base','init_S2',init_S2)
set(handles.init_S2Num,'String',num2str(init_S2))

function init_S2_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function init_Tank_Callback(hObject, eventdata, handles)
init_Tank = get(hObject,'Value');
assignin('base','init_Tank',init_Tank)
set(handles.init_TankNum,'String',num2str(init_Tank))

function init_Tank_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function in_Flow_Callback(hObject, eventdata, handles)
in_Flow = get(hObject,'Value');
assignin('base','in_Flow',in_Flow)
set(handles.in_FlowNum,'String',num2str(in_Flow))

function in_Flow_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function f_Level_Callback(hObject, eventdata, handles)
f_Level = get(hObject,'Value');
assignin('base','f_Level',f_Level)
set(handles.f_LevelNum,'String',num2str(f_Level))

function f_Level_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))

102

 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

% --
function screen_simulation_Callback(hObject, eventdata, handles)

function out_Rate_Callback(hObject, eventdata, handles)
out_Rate = get(hObject,'Value');
assignin('base','out_Rate',out_Rate)
set(handles.out_RateNum,'String',num2str(out_Rate))

function out_Rate_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function t_Rate_Callback(hObject, eventdata, handles)
t_Rate = get(hObject,'Value');
assignin('base','t_Rate',t_Rate)
set(handles.t_RateNum,'String',num2str(t_Rate))

function t_Rate_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function s1_Low_Callback(hObject, eventdata, handles)
s1_Low = get(hObject,'Value');
assignin('base','s1_Low',s1_Low)
set(handles.s1_LowNum,'String',num2str(s1_Low))

function s1_Low_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function s1_High_Callback(hObject, eventdata, handles)
s1_High = get(hObject,'Value');
assignin('base','s1_High',s1_High)
set(handles.s1_HighNum,'String',num2str(s1_High))

function s1_High_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get

103

(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function s1_HighHigh_Callback(hObject, eventdata, handles)
s1_HighHigh = get(hObject,'Value');
assignin('base','s1_HighHigh',s1_HighHigh)
set(handles.s1_HighHighNum,'String',num2str(s1_HighHigh))

function s1_HighHigh_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function t_Low_Callback(hObject, eventdata, handles)
t_Low = get(hObject,'Value');
assignin('base','t_Low',t_Low)
set(handles.t_LowNum,'String',num2str(t_Low))

function t_Low_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function t_High_Callback(hObject, eventdata, handles)
t_High = get(hObject,'Value');
assignin('base','t_High',t_High)
set(handles.t_HighNum,'String',num2str(t_High))

function t_High_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function t_HighHigh_Callback(hObject, eventdata, handles)
t_HighHigh = get(hObject,'Value');
assignin('base','t_HighHigh',t_HighHigh)
set(handles.t_HighHighNum,'String',num2str(t_HighHigh))

function t_HighHigh_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);

104

end

function run_Screen_Callback(hObject, eventdata, handles)

delete(instrfindall)
%establish connection with micro
micro = serial('COM21', 'BaudRate', 57600);

%open serial port
fopen(micro);

%connection test
fprintf(micro,'M');
connection_test = [{fscanf(micro)}; {fscanf(micro)}; {fscanf(micro)};...
 {fscanf(micro)}; {fscanf(micro)}]
assignin('base','connection_test',connection_test)

%Scenario 1
%for initial tank level
t_Level = get(handles.init_Tank,'Value');
%for initial s1 and s2 level
s1_Level = get(handles.init_S1,'Value');
s2_Level = get(handles.init_S2,'Value');
%for initial clog level
b_Clog = get(handles.init_Clog,'Value');

%Scenario 2

for a = 1:200
%for Scenario 1
%stage 1 floats
%Low for the tank level
s1_LSL = get(handles.s1_Low,'Value');
%High for the tank level
s1_LSH = get(handles.s1_High,'Value');
%High High for the tank level
s1_LSHH = get(handles.s1_HighHigh,'Value');

%wet well tank floats
%Low for the wet well tank level
t_LSL = get(handles.t_Low,'Value');
%High High for the wet well tank level
t_LSHH = get(handles.t_HighHigh,'Value');

%for Scenario 1
%user defined values

105

%filth level from the tank
f_Level = get(handles.f_Level,'Value');

%Clog clean rate when belt is moving
c_Rate = get(handles.c_Rate,'Value');

maxS1 = 20;
maxTank = 100;
maxG = 100

DO = [{'WD0'},{'WD1'},{'WD2'},{'WD3'},{'WD4'},{'WD5'},{'WD6'}];
g_Mode = get(handles.g_Mode,'Value');
fprintf(micro,[DO{5},',',num2str(g_Mode),'\n']);
fscanf(micro)

%Analog Outputs
AO = [{'WA0'},{'WA1'},{'WA2'},{'WA3'},{'WA4'},{'WA5'},{'WA6'},{'WA7'}];

%Analog output: in_Flow rate to the tank
in_Flow = get(handles.in_Flow,'Value');
AO_value = floor(in_Flow * 4095); AO_ch = 1;
fprintf(micro,[AO{AO_ch},',',num2str(AO_value),'\n']);
fscanf(micro)

%Analog output: Level difference between stage 1 and stage 2
d_Level = s1_Level - s2_Level;
AO_value = floor(d_Level * 4095 / maxS1); AO_ch = 2;
fprintf(micro,[AO{AO_ch},',',num2str(AO_value),'\n']);
fscanf(micro)

%Digital outputs: three digital ouputs for stage 1 floats
if s1_Level > s1_LSHH
 DO_s1L = 0; DO_s1H = 1; DO_s1HH = 1;
else if s1_Level > s1_LSH
 DO_s1L = 0; DO_s1H = 1; DO_s1HH = 0;
 else if s1_Level < s1_LSL
 DO_s1L = 1; DO_s1H = 0; DO_s1HH = 0;
 else
 DO_s1L = 0; DO_s1H = 0; DO_s1HH = 0;
 end
 end
end

%Low float sensor for stage 1
fprintf(micro,[DO{1},',',num2str(DO_s1L),'\n']);
fscanf(micro)

106

%High float sensor for stage 1
fprintf(micro,[DO{2},',',num2str(mod(DO_s1H + 1, 2)),'\n']);
fscanf(micro)
%High High float sensor for stage 1
fprintf(micro,[DO{3},',',num2str(mod(DO_s1HH + 1, 2)),'\n']);
fscanf(micro)

%%Digital outputs: three digital outputs for tank floats
if t_Level > t_LSHH
 DO_tL = 0; DO_tH = 1; DO_tHH = 1;
 else if t_Level < t_LSL
 DO_tL = 1; DO_tH = 0; DO_tHH = 0;
 else
 DO_tL = 0; DO_tH = 0; DO_tHH = 0;
 end
end

%Low float sensor for wet well
fprintf(micro,[DO{4},',',num2str(DO_tL),'\n']);
fscanf(micro)
%High High float sensor for wet well
fprintf(micro,[DO{6},',',num2str(mod(DO_tHH + 1, 2)),'\n']);
fscanf(micro)

%Inputs
%Analog Input
%pump speed is the amound of water going into the screen
AI_ch = 1;
AI = [{'RA0'},{'RA1'},{'RA2'},{'RA3'},{'RA4'},{'RA5'},{'RA6'},{'RA7'}];
fprintf(micro,[AI{AI_ch},'\n']);
AI_value{AI_ch} = fscanf(micro);
AI_value{AI_ch} = str2num(AI_value{AI_ch}(5:end));
p_Speed = AI_value{AI_ch} / 4095;

%Pump speed feedback analog output
p_FB = p_Speed;
AO_value = floor(p_FB * 4095); AO_ch = 6;
fprintf(micro,[AO{AO_ch},',',num2str(AO_value),'\n']);
fscanf(micro)

%Digital Input
DI_ch = 1;
DI = [{'RD0'},{'RD1'},{'RD2'},{'RD3'},{'RD4'},{'RD5'},{'RD6'}];
fprintf(micro, [DI{DI_ch},'\n']);
DI_value{DI_ch} = fscanf(micro);
DI_value{DI_ch} = str2num(DI_value{DI_ch}(5:end));

107

b_Mode = DI_value{DI_ch};

%Clog gets removed when belt is running otherwise keeps getting clogged
%according to the filthy level
b_Clog = b_Clog - b_Mode * c_Rate + f_Level * p_Speed;

%clog percent should be between 0 and 100%
if b_Clog > 1
 b_Clog = 1;
end
if b_Clog < 0
 b_Clog = 0;
end

%tank level is added with in_Flow and substracted from the water going
into
%the stage 1
t_Level = (t_Level + in_Flow) - p_Speed;

%when tank level is 100, the excess water overflows into the reserve
tank
%tank level doesn't decrease in this set up
if t_Level > maxTank
 t_Level = maxTank;
end
%can't be less than 0
if t_Level < 0
 t_Level = 0;
end

stage_transfer = ((s1_Level - s2_Level) * (1 - b_Clog));

%stage 1 level dependent on clog level, transfer rate, level difference
%and in_Flow rate given by pump speed
s1_Level = s1_Level + p_Speed - stage_transfer;

%in_Flow more than the stage 1 capacity then it overflows
if s1_Level > maxS1
 s1_Level = maxS1;
end
%can'b be less than 0
if s1_Level < 0
 s1_Level = 0;
end

%This goes to CompactLogix

108

%Analog output: out_Flow rate from stage 2
%out_Flow indicates the flow going out from stage 2 in each iteration
out_Flow = stage_transfer;
AO_value = floor(out_Flow * 4095 / 20); AO_ch = 5;
fprintf(micro,[AO{AO_ch},',',num2str(AO_value),'\n']);
fscanf(micro)

%Scenario 2
%Digital Input for grit tank pump
DI_ch = 2;
fprintf(micro, [DI{DI_ch},'\n']);
DI_value{DI_ch} = fscanf(micro);
DI_value{DI_ch} = str2num(DI_value{DI_ch}(5:end));
g_Pump = DI_value{DI_ch};

%Digital Output for grit tank pump feedback
g_PumpFB = g_Pump;
fprintf(micro,[DO{7},',',num2str(g_PumpFB),'\n']);
fscanf(micro)

a = a + 1;

axes(handles.axes1);
 bar(t_Level); grid on;
 set(gca,'xticklabel',[])
 ylim([0 100]);
 xlabel(num2str(t_Level));
 r1 = refline(0,t_LSL);
 r3 = refline(0,t_LSHH);
 set(r1, 'color','c')
 text(1.5,t_LSL,{'Low'; 'Float'},'FontSize',6)
 set(r3, 'color','r')
 text(1.5,t_LSHH,{'High High'; 'Float'},'FontSize',6)
axes(handles.axes2);
 bar(s1_Level); grid on;
 set(gca,'xticklabel',[])
 ylim([0 20]);
 xlabel(num2str(s1_Level));
 r1 = refline(0,s1_LSL);
 r2 = refline(0,s1_LSH);
 r3 = refline(0,s1_LSHH);
 set(r1, 'color','c')
 text(1.5,s1_LSL,{'Low'; 'Float'},'FontSize',6)
 set(r2, 'color','y')
 text(1.5,s1_LSH,{'High'; 'Float'},'FontSize',6)
 set(r3, 'color','r')

109

 text(1.5,s1_LSHH,{'High High'; 'Float'},'FontSize',6)
axes(handles.axes3);
 bar(s2_Level); grid on;
 set(gca,'xticklabel',[])
 ylim([0 20]);
 xlabel(num2str(s2_Level));
axes(handles.axes4);
 bar(p_Speed); grid on;
 set(gca,'xticklabel',[])
 ylim([0 1]);
 xlabel(num2str(p_Speed));
axes(handles.axes5);
if b_Mode == 1
 plot(.5,'o','MarkerEdgeColor','r','MarkerSize',
20,'MarkerFaceColor','g');
 set(gca,'xticklabel',[],'yticklabel',[])
 ylim([0 1]);
else
 plot(.5,'o','MarkerEdgeColor','r','MarkerSize',
20,'MarkerFaceColor','w');
 set(gca,'xticklabel',[],'yticklabel',[])
 ylim([0 1]);
end
axes(handles.axes6);
if g_Pump == 1
 plot(.5,'o','MarkerEdgeColor','r','MarkerSize',
20,'MarkerFaceColor','g');
 set(gca,'xticklabel',[],'yticklabel',[])
 ylim([0 1]);
else
 plot(.5,'o','MarkerEdgeColor','r','MarkerSize',
20,'MarkerFaceColor','w');
 set(gca,'xticklabel',[],'yticklabel',[])
 ylim([0 1]);
end

set(handles.l_Difference,'String',num2str(d_Level/20))
set(handles.out_Flow,'String',num2str(out_Flow/20))

pause(.5);
guidata(hObject, handles);

end

function c_Rate_Callback(hObject, eventdata, handles)
c_Rate = get(hObject,'Value');

110

assignin('base','c_Rate',c_Rate)
set(handles.c_RateNum,'String',num2str(c_Rate))

function c_Rate_CreateFcn(hObject, eventdata, handles)
if isequal(get(hObject,'BackgroundColor'), get
(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor',[.9 .9 .9]);
end

function g_Mode_Callback(hObject, eventdata, handles)
g_Mode = get(hObject,'Value');
assignin('base','g_Mode',g_Mode)
set(handles.g_ModeNum,'String',num2str(g_Mode))

111

Bibliography

[1] Wastewater treatment options. Technical report, London School of Hygiene and
Tropical Medicine and Loughborough University, 1999.

[2] U.S. Environmental Protection Agency. Primer for municipal wastewater treat-
ment systems. World Wide Web Page, September 2004. Available at http:

//www3.epa.gov/npdes/pubs/primer.pdf.

[3] National Fire Protection Association. NFPA 1410: Standard on training for
initial emergency scene operations, 2015.

[4] Information Assurance Certification Review Board. Certified SCADA security
architect, 2015.

[5] B.Reaves and T. Morris. An open virtual testbed for industrial control system
security research. International Journal of Information Security, 11:215–229,
2012.

[6] Firefighter Close Calls. NFPA engine evolution #1. World Wide Web Page,
2000. Available at www.firefighterclosecalls.com/weeklydrills.php.

[7] Global Information Assurance Certification. Global industrial cyber security
professional, 2015.

[8] R. Jaromin, B. Mullins, J. Butts, and J Lopez. Design and implementation of
industrial control system emulators. In Critical Infrastructure Protection VII, J.
Butts and S. Shenoi (Eds.), pages 35–46. Springer, Heidelberg, Germany, 2013.

[9] E. Knapp and J. Langill. Industrial Network Security. Syngress, Waltham,
Massachusetts, 2015.

[10] E. Kovacs. ENISA calls for new ICS/SCADA cybersecurity certification pro-
grams. Security Week, February 2015.

[11] M. Lennon. Attacks against SCADA systems doubled in 2014: Dell. Security
Week, April 2015.

[12] T. Morris, A. Srivastava, B. Reaves, W. Gao, K. Pavurapu, and R. Reddi. A
control system testbed to validate critical infrastructure protection concepts.
International Journal of Critical Infrastructure Protection, 4(2):88–103, 2011.

[13] International Society of Automation. SA/IEC 62443 cybersecurity certificate
programs, 2015.

112

[14] U.S. Department of Energy. National SCADA test bed - fact
sheet. World Wide Web Page, September 2009. Available at
http://www.energy.gov/sites/prod/files/oeprod/DocumentsandMedia/

NSTB_Fact_Sheet_FINAL_09-16-09.pdf.

[15] U.S. Department of Homeland Security, Federal Emergency Manage-
ment Agency. Cyberterrorism defense initiative, 2016. Available at www.

cyberterrorismcenter.org.

[16] U.S. Department of Homeland Security, Industrial Control Systems Cyber Emer-
gency Response Team. ICS focused malware, ICS-ICSA-14-178-01, 2014.

[17] U.S. Department of Homeland Security, Industrial Control Systems Cyber Emer-
gency Response Team. Ongoing sophisticated malware campaign compromising
ICS, ICS-ALERT-14-281-01C, 2014.

[18] U.S. Department of Homeland Security, Industrial Control Systems Cyber Emer-
gency Response Team. Ongoing sophisticated malware campaign compromising
ICS, ICS-ALERT-14-281-01D, 2016.

[19] U.S. Department of Homeland Security, National Cybersecurity and Communica-
tions Integration Center. Lessons learned from Cyber Storm IV, 2015. Available
at www.dhs.gov/sites/default/files/publications/Lessons%20Learned%

20from%20Cyber%20Storm%20IV.pdf.

[20] National Institute of Standards and Technology. Framework for improving crit-
ical infrastructure cybersecurity, version 1.0, 2014.

[21] A. Pauna. Certification of cyber security skills of ICS/SCADA professionals,
2014.

[22] F. Petruzella. Programmable Logic Controllers. McGraw-Hill, New York, New
York, 2011.

[23] T. Reuters. Cyberattack that crippled ukrainian power grid was highly coordi-
nated. CBCnews, January 2016.

[24] Rockwell Automation, Milwaukee, Wisconsin. Compact 8-Bit Low Resolu-
tion Analog I/O Combination Module Uer Manual, November 2001. Available
at http://literature.rockwellautomation.com/idc/groups/literature/

documents/um/1769-um008_-en-p.pdf.

[25] Rockwell Automation, Milwaukee, Wisconsin. CompactLogix Con-
trollers Specifications Technical Data, August 2014. Available at
http://literature.rockwellautomation.com/idc/groups/literature/

documents/td/1769-td005_-en-p.pdf.

113

[26] Rockwell Automation, Milwaukee, Wisconsin. 1756 ControlLogix
I/O Specifications Technical Data, June 2015. Available at http:

//literature.rockwellautomation.com/idc/groups/literature/

documents/td/1756-td002_-en-e.pdf.

[27] Rockwell Automation, Milwaukee, Wisconsin. ControlLogix Ana-
log I/O Modules User Manual, March 2015. Available at http:

//literature.rockwellautomation.com/idc/groups/literature/

documents/um/1756-um009_-en-p.pdf.

[28] Rockwell Automation, Milwaukee, Wisconsin. ControlLogix Digital I/O
Modules User Manual, May 2015. Available at http://literature.

rockwellautomation.com/idc/groups/literature/documents/um/

1756-um058_-en-p.pdf.

[29] NYSE Governance Services and Veracode. Cybersecurity and corporate liability:
The board’s view, 2015.

[30] Siemens, Buffalo Grove, Illinois. PXC Modular Series Owner’s Manual, 2013.

[31] D. Storm. Hackers exploit SCADA holes to take full control of critical infras-
tructure. Computerworld, January 2014.

[32] N. Wertzberger, C. Glatter, W. Mahoney, R. Gandhi, and K. Dick. Towards
a low-cost SCADA test bed: An open-source platform for hardware-in-the-loop
simulation. In Proceedings of the 2011 International Conference on Security and
Management, Special Track on Mission Assurance and Critical Infrastructure
Protection, 2011.

114

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–03–2016 Master’s Thesis Aug 2014 — Mar 2016

Framework for Evaluating the Readiness of
Cyber First Responders Responsible for

Critical Infrastructure Protection

15G264

Yoon, Jungsang, Captain, USA

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-16-M-054

Department of Homeland Security ICS-CERT
POC: Neil Hershfield, DHS ICS-CERT Technical Lead
ATTN: NPPD/CSC/NCSD/US-CERT Mailstop: 0635
245 Murray Lane, SW, Bldg 410, Washington, DC 20528
Email: ics-cert@dhs.gov phone: 1-877-776-7585

DHS ICS-CERT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

First responders go through rigorous training and evaluation to ensure they are adequately prepared for an emergency.
From a cyber security standpoint, however, this same set of criteria and rigor is severely lacking. This research provides a
framework for evaluating the readiness of cyber first responders responsible for critical infrastructure protection. The
framework demonstrates the development of evaluation environment, criteria and scenarios that are modeled from NFPA
1410 standards concept that is used for assessing the readiness of firefighter first responders. The utility of framework is
exhibited during a military cyber training exercise and demonstrates the ability to evaluate the readiness of cyber first
responders when responding to the cyber-based attacks in the scenarios. In addition, the results and analysis from the
exercise provide a context to develop a physical processes simulation tool, called Y-Box. The Y-Box creates more
accessible, representational, realistic and evaluation-friendly environment to enhance the framework. The Y-Box
demonstrates its successful application through the simulation of the first two stages in a wastewater treatment plant.

Cyber Exercise, Critical Infrastructure Protection, First Responders, Physical Processes Simulation

U U U UU 127

Dr. Mason Rice, AFIT/ENG

(937) 255-3636, 4620; mason.rice@afit.edu

