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ABSTRACT 

We investigate deception in response to cyber-intrusion or trespassing on 

computer systems.  We present a Response Framework that categorizes the 

types of response we can employ against intruders and show how “intrusion 

deception” has its place in this framework.  To experiment, we put together tools 

and technologies such as Snort, VMware, and honeynets in a testbed open to 

attacks from the Internet.  We wrote some Snort rules and ran Snort in inline 

mode to deceptively manipulate packets of attackers.  Our results showed that 

attackers did react to our deceptions in some interesting ways, suggesting that 

intrusion deception is a viable response to intrusion. 
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I. INTRODUCTION  

A. CYBER-INTRUSION  
Malicious hacking has been a perennial problem from the days of 

wardialing and phone phreaking to the present day of “script kiddies” and 

underground “blackhats.”  In the early days, very little was known about these 

cyber-intruders, let alone tools to detect and prevent their attacks.  Today we 

depend primarily on our access control and other security policies to prevent 

unauthorized access.  Hardening and patching our systems with the latest 

service packs and “hot fixes” can further deter intruders.  In addition, we also 

have fairly mature technologies in intrusion detection systems and intrusion 

prevention systems that react accordingly as a second line of defense should an 

intrusion occur.   

According to the 2006 CSI/FBI Computer Crime and Security Survey [1], 

the use of intrusion detection systems is at 69% and this has maintained fairly 

stable over the years.  Usage is also measured as fairly stable for other mature 

technologies such as the use of firewalls, anti-virus software and server-based 

access control lists.  Yet the top two sources of financial losses continue to be 

attributed to virus attacks and unauthorized access to information.  On the other 

hand, the use of intrusion prevention systems has increased to 43% from 35% in 

the previous year.  We argue that more advances need to take place as the 

intrusion prevention technology grows and matures so that it can be more 

effective in responding to intrusions. 

 

B. LIMITATIONS OF CURRENT RESPONSES 
The current efforts of intrusion detection and intrusion prevention against 

cyber-intrusion can be limited.  Intrusion detection systems are passive in nature 

and exist only to alert the administrator of possible intrusions.  Further analyses 

are required to ascertain the validity of the alert and very often we are bogged 



 2 

down by the sheer number of such alerts.  In general, intrusion detection systems 

do not respond directly to the intruder. 

Intrusion prevention systems essentially work the same way as intrusion 

detection systems except that they have the additional capability to block 

potentially malicious traffic.  Some intrusion prevention systems can dynamically 

reconfigure the firewall or specific host systems to tighten their security in 

response to the intrusion [2].  Although these responses are active, they are 

restricted to entities within the organization and are defensive in nature. 

We do not dispute the respective roles of hardening, patching, intrusion 

detection, and intrusion prevention in our suite of responses to malicious 

intruders.  Hardening and patching our systems are like the helmets and 

protective gear used in the military for basic protection against the adversary.  

There is also a need for outposts and blockades to detect and deter potential 

intruders.  This is where intrusion detection and intrusion prevention fit in the 

framework of intrusion responses. 

 

C. OTHER POSSIBLE RESPONSES 
Consider two other possibilities in response to intruders, namely, 

deception and counterattack.  Responding to an intrusion with a counterattack, 

however, may not be legally justified and it may also cause unintended collateral 

damage to innocent bystanders [3].  It is similar to the use of disproportionate 

and unnecessary force to bombard an intruder with artillery shells while causing 

inadvertent damage to civilians in the vicinity.  Due to these ethical and legal 

issues, we will not consider counterattack responses even though there may be 

situations that render such courses of actions viable. 

Deception serves to confuse, delay or even just to frustrate the adversary.  

Following the same analogy to conventional military operations, we view 

deception akin to military employment of ruses and wit to deter or even entrap 
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intruders.  This approach gives us a rich set of alternative techniques for intrusion 

deception which we can add to our framework of responses.   

To develop such deceptive techniques, we need to study and understand 

how our potential adversaries conduct their business.  The Honeynet Project was 

formed to develop tools and technologies to capture and study intruders who 

break into a network of decoy machines known as honeypots.  It is worthy to note 

that a honeypot by itself is also a deception.  Through the use of this deception, 

we study the behavior of intruders and develop deceptive techniques to foil their 

future intrusions. 

 

D. THESIS ORGANIZATION 
This thesis is organized into six chapters.  Chapter II will survey the 

previous work done on topics related to intrusion deception.  We discuss the 

possible applications of it and its place in the framework of intrusion responses in 

Chapter III.  In Chapter IV, we present the methodology behind our work with 

intrusion deception.  We analyze the results of our experiments in Chapter V 

before concluding in Chapter VI. 
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II. PREVIOUS WORK 

Sun Tzu, the military strategist in medieval China, endorsed the use of 

deception during battle.  His reasoning is twofold: to obtain a swift victory and to 

achieve it at a minimal loss of lives or casualties from his army.  Accordingly, it 

makes sense to apply deception-related concepts in our battles against cyber-

intrusion.  We shall discuss a few works by our predecessors in this chapter. 

 

A. DECEPTION TOOLKIT 
Cohen published a seminal paper introducing the use of deception in 

information protection [3].  In the paper, he draws many parallels to the use of 

deception tactics in a military context.  These tactics can be broadly classified as 

concealment, camouflage, false and planted information, ruses, displays, 

demonstrations, feints, lies, and insight [4]. 

At the same time, he made freely available a Deception Toolkit (DTK) 

which was a software designed to enable intrusion deception.  The host server 

running DTK appears to intruders to have a large number of widely known 

vulnerabilities.  DTK listens for inputs from intruders and provides seemingly 

normal responses that further confuse or delay them.  For example, a fake 

password file can be provided to the intruder who will have to spend CPU cycles 

cracking the passwords before finding out that they are useless anyway.  In this 

way, DTK increases the workload of the intruder and serves to frustrate and 

eventually deter them. 

The output responses issued by DTK to the intruder are also 

programmable, but need an in-depth understanding of the protocol that the 

intruder chooses to exploit.  The last update to DTK was on August 1999. 
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B. LABREA TARPIT 
Liston had the idea of a “sticky honeypot” in response to the CodeRed 

worm [5].  The resulting software, the LaBrea Tarpit, creates virtual servers that 

seem to reside on the unused IP (Internet Protocol) addresses of an 

organization’s allotted IP space.  These servers delay intruders by answering 

connection attempts so that the intruders get "stuck," sometimes for a very long 

time.  Thus the software acts like a tar pit.  

This form of deception is very similar to those of DTK except that LaBrea 

Tarpit specializes only on the TCP connections that an intruder makes while 

probing a victim network.  Since then, other “tarpit” technologies have surfaced.  

These include SMTP tarpits and IP-level tarpits as implemented by Iptables in 

Linux kernels.   

Developments on LaBrea Tarpit came to a halt in 2003 because of 

concerns about the DMCA (Digital Millennium Copyright Act) which indirectly 

made the software an unlawful communication device.  This highlights the very 

real ethical and legal issues that come with using deception even for the purpose 

of defending our networks. 

 

C. HONEYPOTS AND ANTI-HONEYPOTS  
When the Honeynet Project was initially formed it was loosely comprised 

of security experts who wanted to learn more about how intruders operate and to 

develop tools and techniques to enable that [6].  Today, the organization 

comprises of active members from the security community and is still led its 

founder and security authority, Spitzner.  In addition, the Honeynet Research 

Alliance brings together different independent organizations from around the 

world that are interested in honeynet research. 

A honeynet is a network of honeypot machines used to create an 

environment where the tools and behaviors of intruders can be captured and 

studied.  Evolving over three generations, the Honeynet Project’s honeynet 
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architecture consists of three main components: the honeypots that attract the 

intruders, the gateway that provides data control and data capture, and the 

remote alert/log server.  The specifics of the honeynet methodology, techniques, 

and tools are well documented in their book.  

A honeynet by itself does not provide a response to the intruder.  On the 

other hand, in a more sophisticated intrusion prevention scenario, an intruder can 

be lured using the actual production server as bait and switched or redirected to 

a honeypot server acting as a decoy target [7].  Our works departs from this 

model as we use the honeynet technology solely as a framework in which we can 

study the intruders and experiment with deceptive responses. 

As the honeypot technology matures and becomes more pervasive, there 

is also increasing interests in detecting the presence of honeypots [8].  Such anti-

honeypot techniques focused on examining peculiarities of honeypots such as 

User-mode Linux, VMware, additional defenses like chroot() and jail(), timing 

issues, and detecting debuggers.  Another interesting development to anti-

honeypot technologies is in the area of spamming [9].  As spammers increasingly 

face the challenge of having their bulk mail channeled to honeypots, they react 

by creating tools such as the Honeypot Hunter to help them avoid the bait.  

These developments can be classified as a kind counter-deception and our 

responses to them as counter counter-deception [10]. 

 

D. SNORT 
In 1999, Roesch created a “simple, lightweight, and open-source” network 

intrusion detection system, Snort [11], for small networks.  Today, Snort has 

evolved to become the de facto standard in intrusion detection and intrusion 

prevention technologies.  He was a member of the initial Honeynet Project and 

Snort was used as one of the data capture mechanisms in its honeynet 

architecture. 
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The Snort architecture has three components: packet decoder, detection 

engine, and the logging and alerting subsystem.  In addition, Snort depends on 

the libpcap library to enable its promiscuous packet sniffing and filtering 

capabilities.  The key to successful detection is rules which define the intrusion 

signature and the action to take if a rule fires. 

If a rule action is configured to “log” or “alert,” Snort essentially operates 

as an intrusion-detection system.  Later versions of Snort allow it to operate in 

inline mode and the rule actions are extended to “drop” and “reject,” making 

Snort function as an intrusion prevention system.  In addition, there is also a 

“replace” rule option that modifies packets as they traverse the network.  Our 

interest in Snort lies in this packet-mangling capability of Snort Inline that enables 

intrusion deception. 

 

E. IMMUNOLOGY 
Somayaji and Forrest introduced a kind of automated response that 

models computer defenses based on the immune system [12].  The proposed pH 

(process Homeostasis) system monitors all system calls thereby emulating the 

immune system.  It then either delays or aborts system calls if they were deemed 

to be anomalous, very much like the way antibodies neutralizes the harmful virus.   

In order to determine whether an anomaly has occurred, there is a training 

phase where the pH system learns what constitutes normal behavior.  The 

amount of delay is governed by the locality frame count or the records of the 

recent anomalous system calls.  If the locality frame count passes a certain 

threshold, then all anomalous system calls are aborted. 

This form of immunological responses is essentially contained within the 

system.  It does not interact with the intruder directly and hence can be viewed 

as a defensive approach.  Yet at the same time, it also employs some form of 

deception to delay the intruder. 
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F. COMPARISON TO OUR APPROACH 
We view our work as continuing these efforts with some differences.  We 

use a patched server without any additions, allowing the attacker to see and 

interact with the system as is.  We also use only one IP address for each 

honeypot server that we put online leaving the unused IP addresses unoccupied.  

We do not apply any countermeasures against anti-honeypot technologies 

although this can be an area of refinement that we can explore in the future. 

In addition, we prefer to leverage existing software that has the ability to 

achieve some level of deception.  In particular, we use Snort as an intrusion-

detection system and experiment with its intrusion-prevention capabilities.  The 

idea is to modify existing Snort detection rules and change them into deception 

rules.  In this way, we achieve the programmability of DTK without going into the 

details of the protocol being exploited by the intruder. 

Lastly, we want to experiment with deception that interacts with the 

intruder in a somewhat offensive manner.  We do not want to restrict ourselves to 

defensive deceptions such as those used in the pH system.  Our Response 

Framework in the next chapter categorizes the various responses to intrusion 

and shows how intrusion deception can be a viable alternative to existing 

responses. 
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III. APPLICATIONS 

A. RESPONSE FRAMEWORK 
We present a framework for intrusion responses that is currently employed 

today and also that we propose in this thesis (Figure 1).  The matrix in the 

framework categorizes the responses based on whether they are active or 

passive, and whether they are defensive or offensive in nature.  This classifies 

the responses such as detect, block, tighten, deceive, and counterattack into four 

possible categories of responses: 

 

Nature of 
Response 

Defensive Offensive 

Passive Detect  Deceive 

Active 
Block 

Tighten 

Deceive 

Counterattack 

 
Figure 1.   Response Framework 

 
Intrusion-detection systems serve only to detect intrusions and hence are 

truly passive-defensive in nature.  Intrusion-prevention systems essentially use 

blocking mechanisms to prevent intrusions once they are detected.  Some 

intrusion-prevention systems can even tighten the firewall or host systems 

depending on the vulnerability the detected intrusion aims to exploit.  Yet other 

intrusion-prevention systems mangle with the malicious network packets to 

render them harmless once they enter the internal network.  Interestingly, this is 

a form of deception of the internal servers into thinking that all is well.  Although 



all these dynamic measures are active, they are all restricted within the internal 

boundary and hence are defensive.  Thus, intrusion-preventive responses are 

mainly active-defensive in nature. 

The upper right cell in the matrix represents a class of responses that are 

passive yet offensive at the same time.  This may seem contradictory but we 

view passive-offensive as aptly describing the very nature of deception.  Contrast 

these with active-defensive ones, such deceptions are not restricted within the 

internal boundary.  They act on outgoing traffic to deceive the intruder, usually in 

response to malicious requests made by the intruder.   

Finally, the last cell can be viewed as a true act of aggression 

representing responses that are actively on the offensive.  These responses are 

often left as the last resort and are activated only under exigent circumstances.  

Such scenarios are plentiful in the conventional military context but we must 

tread carefully when taking the course of counterattack in response to intrusion in 

cyberspace. 

 

B. RESPONSE LEVELS 
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Figure 2.   Escalating Response Levels 

 
We can also view our Response Framework as a series of escalating 

levels (Figure 2).  Our Level I response to intrusion is to detect it.  When we find 

out more about the nature of the intrusion, we may then proceed to Level II 

responses.  With the ability to identify previous intrusions, we can block similar 

future occurrences.  We may also tighten our own defenses to remove known 

 
 

Detect 
 
I 

 
Block 

Tighten 
Deceive 

II 

 
 

Deceive 

 
Counter-

attack   

IV III 



 13 

vulnerabilities.  In addition, we may employ some form of deception on the 

incoming intruder so that they do not end up damaging our assets.   

If the intrusions still persist despite all our access controls, we may then 

proceed to Level III deceptions.  The intent of these responses is to confuse, 

delay, and frustrate, but not directly attack the intruder.  We do this in the hope of 

attaining a swift victory at a minimal cost.  If this does not deter or divert the 

intruder, we will then have to consider our Level IV options.  Our counterattack 

must be minimal and proportionate to the force in which the violating intrusion 

had applied.  Prior to the declaration of an all-out war, we must only be seen as 

using a reasonable and restrained level of force in defense of our assets.  As the 

aggression continues to escalate and hostile intent has been demonstrated, we 

may then be on the full offensive.  Our response could be to launch malicious 

counterattacks on the system originating the intrusions or even its neighbors 

depending on the threat level. 

The Response Levels can indicate different levels of an organization’s 

ROE (Rules of Engagement) in response to intrusion threats.  Under normal non-

hostile conditions, an organization’s ROE level would be Level I.  With the 

occurrences of confirmed intrusions, the ROE level can then be upgraded 

accordingly. 

Intrusion-detection and intrusion-prevention vendor products can also be 

similarly rated.  For example, intrusion-detection systems are typically Level I 

products while current intrusion-prevention systems are Level II products.  An 

organization’s ability to react to the various ROE levels depends largely on the 

availability of suitable enabling tools.  Intrusion deception plays a crucial role in 

pushing the current boundaries of intrusion-prevention technology and taking 

intrusion responses to the next levels. 
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C. ASSUMPTIONS 
Besides technical issues, an important barrier to the advancement of 

intrusion-prevention technologies to Levels III or IV is the legal and ethical issues 

with deception and counterattack.  In addition, the Internet space cut across 

international boundaries that span a variety of laws and constitutions that further 

complicate the employment of these measures.  If some common code of 

conduct such as the Geneva Conventions can be adopted, then we can achieve 

a certain level of understanding when employing Level III and IV technologies.  

However, this does not resolve all of the legal and ethical issues any more than 

the Geneva Conventions did to the conduct of war. 

Leaving legality and ethics aside, Level III deceptions can themselves 

create problems on real production servers.  This is because a production server 

is supposed to be truthful and provide services in accordance to the standards 

and protocols that govern its services.  Fortunately, there are technologies such 

as the “bait and switch” honeypot that redirects the intruder to a decoy server 

which can handle the deceptive responses.  

The earlier discussion on the escalating Response Levels does not restrict 

us from employing different technologies in parallel in a defense-in-depth 

manner.  We still need helmets and protective gear for basic protection, and also 

outposts and blockades as a second line of defense.  In addition, we now have a 

new set of defenses to respond to intruders at Levels III and IV. 
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IV. METHODOLOGY 

We break down our work on intrusion deception into three distinct phases, 

namely, setup, rule development, and experimentation.  The setup phase 

involved studying the intruders and their exploit methods.  We targeted the 

common intrusion exploits that we collected in the setup phase and developed 

corresponding deceptive rules to test in the experimentation phase.  This process 

is cyclical in nature as the results of the experimentation provide feedback to fine 

tune the rules. 

 

A. SETUP 
We set up our testbed (Figure 3) in the first phase.  Most of the setup was 

done in the thesis of Binh Duong [13].  The three components of the setup 

correspond to the honeynet architecture discussed in Chapter 2.  The testbed 

makes use of virtualization software to run the different honeypots.  We take a 

hybrid approach in which the virtual honeypots are hosted in one physical 

machine while the gateway and remote alert/log servers are hosted in two other 

machines. 

The honeynet machine runs VMware that hosts two virtual machines a 

Windows 2000 Server and a Windows XP machine.  The router machine serves 

as the gateway and channels traffic from the Internet to the honeynet and vice 

versa.  Data capture is also done on the router machine by running Snort in 

intrusion-detection mode.  The alerts are logged locally and also sent to a remote 

Postgres database that is inaccessible from the Internet.  As Snort listens to the 

network in promiscuous mode, we encountered alerts that were meant for 

servers on the network other than our setup.  One way to eliminate these alerts is 

to configure Snort to restrict its processing only to the IP address of the router 

machine instead of a subnet of addresses.  However, we chose to keep these 

secondary alerts for better situational awareness and filter them out through 

structured queries on the database when necessary.   



 
 

Figure 3.   Learning Testbed 
 

We ran this testbed for about a year and observed the number and types 

of Snort alerts that took place.  The default Snort configuration had did not 

differentiate between the external network and the home network.  This resulted 

in alerts that were false positives such as the MS-SQL outbound alerts that were 

triggered even though the intrusion was clearly inbound.  We rectified the 

configuration by setting the home and external network accordingly.  From these 
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numerous observations, we created a list of exploits used frequently by intruders.  

This list forms a base set of exploits for experiments with intrusion deception.  

We took precautions such that should our honeypots become 

compromised, they will not be used by the intruder as a launch pad to spread 

further attacks.  This is achieved by regularly monitoring the states and 

processes on the honeypots.  We also blocked traffic generated by our 

honeypots to external IP addresses that seem to be probing other networks.  

These were systematic sets of network messages destined for external 

addresses that varied only in the last octet and occurred within a second.  In the 

event that our honeypots are compromised, it is easy to restore to a clean state 

with the use of VMware but we only did this a few times in the year we ran the 

honeynet. 

 

B. RULE DEVELOPMENT 
 As noted earlier, we want to experiment with the deception capabilities of 

Snort running in “inline” mode.  This runs Snort as a simple intrusion-prevention 

system instead of the default intrusion-detection mode.  Inline mode requires two 

additional packages, Iptables and Libnet.  Iptables is used to intercept network 

packets from the network interface card and then pass them along from the 

kernel space to the user space for Snort to process.  Packets not intercepted by 

Iptables are of no interest to Snort Inline and they proceed on to their intended 

destination.  Libnet is a set of high level APIs that allows Snort to construct and 

inject network packets.  We still need to write Snort rules to enable intrusion 

deception.  The design of the Snort rules must be done in tandem with the 

Iptables configuration.  It would be easy to configure Iptables such that it would 

intercept all packets and let Snort process them, but this would be very slow.  So 

we should configure Iptables to be an effective prefilter for Snort.  On the other 

hand, Snort rules should only affect network packets captured by the Iptables 

configuration, so we need to verify the Iptables configuration whenever make 

changes to the rules. 
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 We will present a few examples to illustrate the subtle relationship 

between Iptables and Snort.  Say we want to intercept all inbound ICMP traffic 

through Iptables so that we can direct Snort Inline to drop these packets.  We 

would need a rule in the default Filter table in Iptables as: 

iptables -I INPUT -p icmp -j QUEUE 

This inserts the rule at the top of the rule set in the INPUT rule chain, giving it the 

highest priority on that chain.  The rule intercepts incoming network packets of 

the ICMP protocol and passes them on or jumps to a Snort accessible object 

called the QUEUE.  The corresponding Snort rule would be: 

drop icmp $EXTERNAL_NET any -> $HOME_NET any (…) 

The drop rule action will not pass any incoming ICMP packets from external 

origins on to the operating system thus blocking inbound ICMP traffic.   

To set up the configuration to block outgoing ICMP packets, the rules for 

Iptables and Snort would be: 

iptables -I OUTPUT -p icmp -j QUEUE 

drop icmp $HOME_NET any -> $EXTERNAL_NET any (…) 

Note that we now apply the rule on the OUTPUT rule chain in Iptables and the 

directionality is reversed in the Snort rule.   

As packets traverse the different chains under the filter table in Iptables, 

they take different packet flow paths (Figure 4).  There are two other tables, Nat 

and Mangle, with their respective chains under Iptables.  The Nat table is meant 

for network address translation while the Mange table does low-level packet 

mangling such as that of the TOS (Type of Service) field.  For our purposes, we 

only needed to configure the Filter table which is meant for traffic filtering. 



 

 

Figure 4.   Packet flows and chains under Iptables 
 

The “Local Processes” node represents the processes that run on our 

router machine.  The router machine is assigned the public IP address that is 

accessible on the Internet.  Therefore, when an incoming ICMP packet reaches 

the network interface card, Iptables checks if the packet requires routing.  In this 

case the router machine itself will answer to the ICMP request and hence it does 

not require further routing.  The packet is passed on to the INPUT chain and 

Iptables will run the packet through the filtering rules in that chain.  The filtering 

rules then decide to pass or drop the packets.  The flow is the same if the router 

machine is sending outgoing ICMP packets except that now they pass through 

the OUTPUT chain.   

Due to the peculiarity of our testbed, traffic destined for our honeynet will 

be routed accordingly by the router machine.  In this case, the final destination is 

not the router machine and hence the traffic will not pass through the INPUT or 
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OUTPUT chains but through the FORWARD chain instead.  To illustrate, if we 

want to drop outbound probes for port 135 on external IP addresses, the 

respective rules for Iptables and Snort would be: 

iptables -I FORWARD -p tcp –-dport 135 –s X.X.X.X/24 -j QUEUE 

drop tcp $HOME_NET any -> $EXTERNAL_NET 135 (…) 

The Iptables rule captures routed traffic TCP that comes from our honeynet and 

is destined for port 135 of any IP address.  The Snort rule acts on the same 

traffic and drops it accordingly. 

Our Snort rules so far have only used the action “drop” making Snort just 

an intrusion prevention system.  We show an example of using the “replace” 

option in the rule to enable intrusion-deception. 

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (content:"530 "; 

replace:"331 "; isdataat:1, relative; content:"cannot log in"; 

replace:"logged in.   ";) 

This Snort rule acts on FTP (File-Transfer Protocol) responses from our 

honeynet to the any FTP client on the Internet.  The “alert” rule action seems to 

be running Snort in intrusion-detection mode.  However, the “replace” rule option 

is used (twice in this case) to make Snort run as a Level III system.  The first 

“replace” substitutes the FTP return code “530” with “331”.  The FTP client will be 

deceived into interpreting the response “331” as “User name okay, need 

password” instead of “530” which is “User X cannot log in”.  The second “replace” 

substitutes the message associated with the return code “530” with that 

associated with the code “230 – User X logged in”.  Note that there are trailing 

spaces in the second “replace” because the implementation in Snort requires an 

exact number of characters to be substituted.  The option “isdataat” takes care of 

the “User X” string that appears after the return code but before the string 

“cannot log in”.  In essence, there are two deceptions that take place here.  One 

is with the FTP return code, while the other is with the return message.  It is not 

necessary to synchronize both deceptions and we do this in the hope of 

confusing the intruder. 
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Although Snort in intrusion-detection mode was already in place during the 

setup phase, we ran another instance of Snort on the router machine in intrusion-

deception mode to accomplish the packet-manipulation rules.  We also set up a 

corresponding database to receive alerts from the second instance of Snort.  In 

addition, it has become apparent over time that we need a different set of clues 

other than the Snort alerts as a cross reference in aid of a more complete 

forensic analysis [14].  As a result, we also ran a full packet capture using 

Tcpdump on all the network traffic arriving at the router machine.  The details of 

configuring Iptables and the various command line options to run Snort Inline and 

Tcpdump can be found in Appendix A.   

 

C. EXPERIMENTATION 
Having set up Snort Inline, we developed several types of deceptive rules 

we could use.  In particular, we wanted to compare across the Response Levels.  

This led us to group experiments in terms of Level I, Level II, and, Level III 

responses.  In addition, we also experimented with the effects of operating 

system patching which is a Level 0 response.   

As we had a single honeynet, we successively reused the same setup for 

each experiment but made modifications to reflect the correct Response Level.  

The nature of intrusion attempts generated by each of these Response Levels 

provides us with a comparison across levels.  Specifically, we looked at the 

counts and variety of intrusion types over the period of time when a particular 

Response Level was active.  The counts are the number of intrusions while the 

variety is the number of distinct intrusion types.  For a more detailed analysis, we 

break down the intrusion counts into five major intrusion groups and study how 

the counts in these groups are affected by the different Response Levels.   

For the Level 0 experiment, we set up a honeypot with Windows 2000 

Advanced Server without any service packs or patches.  The honeypot was then 

put online allowing intruders to interact with it.  We collected a separate 36 hours 

of intrusion data for each particular experiment.  We ran each experiment several 
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times to collect the mean and standard deviation of its statistics.  As a control 

experiment, we also perform the same experiments but updated the operating 

system with the latest service pack and patches. 

The Level 0 experiment examined the effects of introducing a newly 

installed system on the Internet.  In the Level I experiment, we let the setup 

stabilize over a period of one week after it was first put online.  This setup was no 

longer novel to intruders and we used this to represent the typical system that 

runs a Level I intrusion-detection system. 

For the Level II experiment, we modified the Snort rules to drop ICMP 

traffic going to and coming out of our honeynet.  The purpose was to study the 

effects of blocking reconnaissance activity on the subsequent actions of the 

intruder.  This setup was a kind of intrusion-prevention system. 

Finally, we focused on intrusion deception for our Level III experiment.  

We kept the rules from the Level II experiment but in addition, we changed the 

rules to replace certain keywords in protocol messages with deceptive ones.  

Such keywords can include return codes and substrings in return messages as 

discussed in our file-transfer example earlier.  Our strategy here was to delay the 

intruder by faking protocol messages and codes.  Another instance of our 

deception was to change the protocol version or command number to an invalid 

one.  Here, we were hoping to confuse and discourage the intruder through the 

breakdown in the protocol.  The details of these deceptive rules are listed in 

Appendix B.  As a subexperiment, we also examined the effects of deceptive 

responses on file-transfer intrusions. 



V. RESULTS ANALYSIS 

 Our initial findings from the alerts collected for the past year indicated that 

the intruder behavior is affected significantly by our honeynet downtime [15].  We 

clustered the data in three different ways and found that they all pointed to the 

same conclusion; that intrusions spiked whenever our honeynet recovered from a 

period of downtime (Figure 5, taken from [15]).  The spikes occurred after weeks 

twelve and twenty-six when we had just brought the honeynet online after a 

period of maintenance.  This led us to further investigate this finding through the 

series of experiments that follow. 

 

 
Figure 5.   Alerts clustered by time, sequences, and K-Means properties  
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In tabulating the results we obtain from the various experiments, it was 

helpful to remove some intrusion types that gave anomalous counts.  This was 

also done with the ICMP Unreachable backscatter [16] because their large 

numbers would skew the data and prevent proper comparison.  We list such 

intrusion types (Table 1) and explain why they are excluded from the normalized 

data.  These intrusion types accounted for 98.7% of the raw counts for one run in 

the Level 0 experiment where the honeypot was compromised and used by the 

successful intruder to probe other networks.  Counts were greatly inflated thus 

indicating an anomaly. 

 

S/No Intrusion Type Reason for exclusion 

1. ICMP Destination Unreachable 

Host Unreachable 

2. ICMP Destination Unreachable 

Port Unreachable 

3. ICMP Destination Unreachable 

Network Unreachable 

These intrusion types reflect our 

honeypot being used as a bot to probe 

other networks and do not bear on the 

actual successful intrusion. 

4. ICMP redirect host 

5. ICMP redirect net 

These intrusion types were side effects 

of the intrusion types above. 

6. INFO FTP Bad login 

7. NETBIOS SMB repeated logon 

failure 

These intrusion types were sporadic 

and the counts varied widely depending 

on whether the intruder was using an 

automated tool and what kind if so. 
 

Table 1.   List of excluded intrusion types 
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A. LEVEL 0: PATCHED VS. UNPATCHED 
 

Run Count Variety 

1 1219 20

2 937 18

3 1043 12

Mean 1066.33  16.

S.D 142.44  4.16
 

Table 2.   Normalized results of an unpatched system 
 

Run Count Variety 

1 609 9

2 244 10

3 296 22

4 748 18

5 1150 19

Mean 609.40 15.60

S.D 368.51 5.77
 

Table 3.   Normalized results of a patched system 
 

The Level 0 experiment compared the effects of an outdated operating 

system (Table 2) with an updated one (Table 3) after the system was brought 

online.  Comparing the data, we can see that the unpatched systems had higher 

counts and variety (as defined in Chapter 4) with lower standard deviations.  This 

suggests that outdated operating systems are more likely to attract intruders than 

updated ones.  In addition, since there are more known vulnerabilities in outdated 

operating systems, intruders have more leeway in choosing the type of attacks 
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against it.  These findings confirm the effectiveness of operating system 

patching, a basic Level 0 response, against intrusion.  

 

Run ICMP Ping 
MS-SQL 
Overflow 

NETBIOS 
Overflow 

SHELLCODE 
NOOP 

Others 

1 997 100 13 32 77
2 786 64 22 59 6
3 941 70 12 29 2

Mean 908.00 78.00 15.67 40.00 28.33
 

Table 4.   Results of an unpatched system by intrusion groups 
 

Run ICMP Ping 
MS-SQL 
Overflow 

NETBIOS 
Overflow 

SHELLCODE 
NOOP 

Others 

1 365 58 0 0 186

2 128 40 0 0 76

3 53 54 71 80 38

4 246 56 198 243 5

5 588 62 262 235 3

Mean 276.00 54.00 106.20 111.60 61.60
 

Table 5.   Results of a patched system by intrusion groups 
 

Next, we compared the intrusion counts for each of the five major intrusion 

groups between the unpatched (Table 4) and the patched (Table 5) systems.  

The ICMP Ping and MS-SQL overflow intrusion groups had a higher count for the 

unpatched system.  The reverse was true for the NETBIOS Overflow, 

SHELLCODE NOOP, and Others intrusion groups.  This suggests that the 
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intruder typically conduct more ICMP type of reconnaissance on an unpatched 

system.  In addition, the preferred intrusion type for an unpatched system seems 

to be from the MS-SQL group.  On a patched system, however, the intruder 

opted for more sophisticated and varied types of intrusion as seen in the 

significant increase in the NETBIOS Overflow, SHELLCODE NOOP and Others 

groups. 

 

B. LEVEL I: STEADY-STATE SYSTEM  
 

Run Count Variety 

1 767 9

2 679 25

3 439 16

4 601 16

5 796 16

Mean 656.40 16.40

S.D 143.67 5.68
 

Table 6.   Normalized results of a steady-state system 
 

In the Level I experiment, we studied how intrusions on a system running 

an intrusion-detection system has stabilized since it was first brought online 

(Table 6).  Comparing the data with a Level 0 patched system, we see that the 

intrusions for the stabilized system increased slightly but had a significantly lower 

standard deviation.  The same applies to the variety of intrusion types.  This 

suggests that even if the system is patched, it is still subjected to attacks.  

Moreover, the fact that it is still uncompromised over a week seems to encourage 

more and varied intrusion attempts.  
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Run ICMP Ping 
MS-SQL 
Overflow 

NETBIOS 
Overflow 

SHELLCODE 
NOOP 

Others 

1 521 58 0 0 188

2 148 58 172 151 150

3 144 64 129 88 14

4 277 58 137 128 1

5 640 52 37 54 13

Mean 346.00 58.00 95.00 84.20 73.20
 

Table 7.   Results of a steady-state system by intrusion groups 
 

We made a similar comparison between the patched and the steady-state 

systems but this time on the intrusion groups (Table 7).  There was a slight 

increase in the ICMP Ping, MS-SQL Overflow, and Others intrusion groups.  This 

concurred with our earlier conclusion that a steady-state system is still subjected 

to attacks.  The focus now seems to be on ICMP reconnaissance and more 

varied attacks under the Others group. 

 

C. LEVEL II: BLOCKING SYSTEM 
We observe a system running an intrusion-prevention system in our Level 

II experiment (Table 8).  Comparing it with the Level I system, we see that the 

intrusion count increased significantly with a low standard deviation, but the 

variety of intrusion types decreased with a lower standard deviation.  This 

suggests that blocking ICMP reconnaissance attempts from intruders only make 

them more curious about compromising the system.  However, the blocking 

strategy seems to be effective in restricting the types of intrusions that occur. 
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Run Count Variety 

1 892 14

2 1016 10

3 1027 18

4 881 20

5 968 14

6 1244 17

7 933 17

8 917 11

Mean 984.75 15.13

S.D 117.65 3.48
 

Table 8.   Normalized results of a blocking system  
 

Run ICMP Ping 
MS-SQL 
Overflow 

NETBIOS 
Overflow 

SHELLCODE 
NOOP 

Others 

1 579 74 95 140 4

2 881 84 17 33 1

3 807 78 58 72 12

4 700 78 25 46 32

5 675 60 70 147 16

6 932 114 64 120 14

7 762 70 52 45 4

8 785 86 20 25 1

Mean 765.13 80.50 50.13 78.50 10.50
 

Table 9.   Results of a blocking system by intrusion groups 
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The count by intrusion groups also supported our conclusion about the 

Level II system (Table 9).  The ICMP Ping group more than doubled while the 

MS-SQL Overflow group had a modest increase.  The rest of the groups reported 

decreases with the most significant drop in the Others group.  The blocking 

system was successful in reducing these intrusion groups but at the expense of 

rousing the curiosity of intruders and causing more reconnaissance. 

 

D. LEVEL III: DECEPTIVE SYSTEM 
We examined a system running intrusion deception in our Level III 

experiment (Table 10).  Comparing it with the Level II system, we see that the 

intrusion count has increased with a fairly low standard deviation.  On the other 

hand, the variety of intrusion types has decreased significantly with a low 

standard deviation.  This suggests that our deceptions seem to encourage more 

intrusions possibly due to the confusion and delay that was caused by the 

deceptive responses.  However, our deceptions were more effective in restricting 

the intrusion types than Level II blocking did. 

 

Run Count Variety 

1 987 15

2 971 14

3 776 13

4 1234 11

5 1526 15

6 1519 18

7 1356 14

Mean 1195.57 14.29

S.D 291.83 2.14
 

Table 10.   Normalized results of a deceptive system  
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The comparison by intrusion groups agreed with our discussion about the 

Level III system (Table 11).  Our deception targeted the NETBIOS Overflow thus 

explaining its significant decrease.  This also led to a consequential decrease in 

the SHELLCODE NOOP group because these intrusions usually follow after 

successful NETBIOS Overflow attempts.  The intruder was thus forced to try 

other means as shown by the increase in the ICMP reconnaissance, MS-SQL 

Overflow and Others groups.   

 

Run ICMP Ping 
MS-SQL 
Overflow 

NETBIOS 
Overflow 

SHELLCODE 
NOOP 

Others 

1 854 90 23 15 5

2 875 64 9 19 4

3 693 64 5 12 2

4 1081 132 6 8 7

5 1304 166 9 9 38

6 1123 154 55 124 63

7 1098 150 19 77 12

Mean 1004.00 117.14 18.00 37.71 18.71
 

Table 11.   Results of a deceptive system by intrusion groups 
 

We also examined the effects of our FTP deception on the duration of 

logon attacks attempts.  We charted the durations of FTP intrusions by eight 

intruder IP addresses (Figure 5).  This first shown with the dotted pattern fill 

indicates a typical FTP intrusion on a Level II system; the remaining seven 

occurred on a Level III system.  Six out of these seven intrusions ended within 

two hours; one where our deception was not successful in dissuading the 

intrusion ended just less than five hours.  The latter attack suggests an intruder 

who uses automated tools to scan and conduct attacks.  They probably let the 



tool run without much monitoring and return some five hours later to check on 

their yield.  In all seven attempts on the Level III system, the intruder did not learn 

anything about the password from the numerous logon attempts.  The first FTP 

intrusion on the Level II system, however, the intruder had learnt that the three 

hours worth of password combinations tried so far do not work. 

 

 
 

Figure 6.   Effects of deception on duration of FTP attacks 
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VI. CONCLUSIONS 

A. ACHIEVEMENTS 
We have shown that intruders are affected by the different responses to 

their intrusions.  We summarize our previous results in Figure 6 by plotting the 

intrusion counts (left y-axis) and variety (right y-axis) across the different 

Response Levels.  The Level I system performs best at keeping the intrusion 

counts at a stable low.  As we go to Levels II and III, the intrusion count rises 

although the Level III rise is not as much due to a higher standard deviation.  At 

the same time, the intrusion variety decreases at a slower rate.  This suggests 

the potential of Level II and III systems in dealing with intrusion types that Level I 

systems cannot handle. 

 

 
 

Figure 7.   Statistics on Intrusions across Response Levels 
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We also showed that the intruders’ choice of attack was affected by the 

different Response Levels in use (Figure 8).  We were successful in decreasing 

the intrusions belonging to the NETBIOS Overflow, SHELLCODE NOOP, and 

Others group as we moved from a patched Level 0 system to a Level III system.  

The side effect of progressing up the levels is the increase in the intrusions 

belonging to the ICMP PING and MS-SQL Overflow groups.  We also note an 

increase in the Others group with our Level III deceptive system as intruders are 

forced to find other means of attack.  

 

 
 

Figure 8.   Statistics on Intrusions Groups across Response Levels 
 

In summary, Level 0 experiments showed that patching our systems is 

effective as a basic form of protection against intruders.  On top of that, a Level I 

response using intrusion-detection systems provides an effective layer of 

secondary defense against intrusions.  To respond to common intrusions that 
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take place even with Level I defenses in place, we can take advantage of Level II 

and III responses. 

As a subexperiment in Level III responses to FTP intrusions, we have also 

shown that deception can attain a swift victory at a minimal cost against many 

intruders.  However, similar successes were not observed for deceptions for 

other intrusion types as indicated by the high intrusion counts in our Level III 

experiments.   

 

B. WEAKNESSES 
An important weakness of our Level III experiment was the limitations of 

the “replace” capability in Snort: we could only substitute words with other words 

of the same length.  We also did not have time to try the pattern matching 

capability with regular expressions that is in Snort.  In addition, the “replace” 

capability of Snort Inline is restricted to the application payload of the network 

packet. This prevents us from changing header information such as the IP 

address or the port number for some additional useful deceptions.  This limits the 

level of sophistication of our deceptions, and might explain the increase in 

intrusion counts for our Level III experiment. 

A weakness in our Level II experiment is that we only blocked ICMP 

messages.  The experiment would be more representative of a Level II system if 

we blocked other intrusions as well.  Lastly, our experiments were conducted 

using the same IP address over a year.  Over this time, seasoned intruders 

would have learned and passed along information about the system on this IP 

address.  This may have affected the nature of intrusions that occurred on our 

system even though it evolved from Level 0 to Level III over that time.  It would 

be a fairer comparison if we were to run parallel setups for Level 0 through Level 

III on different IP addresses over the same time period. 
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C. FUTURE WORK 
Possible future work on intrusion deception could use more sophisticated 

deceptions against the intruder.  This could involve other tools with deception 

capabilities instead of the “replace” feature in Snort.  One possibility is to use the 

packet mangling capabilities in Iptables which would allow us to modify packet 

header information along with the payload.  However, this would require 

designing our deceptions at a fairly detailed level and an in-depth understanding 

of the exploited protocol. 

Other aspects of deception can also be explored.  These include the tarpit 

capability which is also inherent in Iptables.  When experimenting with tarpit 

deception, it is worthy to note that the objective is no longer to achieve a swift 

victory but rather to delay the intruder.  As such, a different set of metrics need to 

be derived in order to compare its effectiveness across the Response Levels. 

Finally, our deceptions can be detected and the intruder may take 

measures to counter our deception.  As a consequence, we also need to explore 

what we can do to counter the intruder’s counter-deception.  One possibility of 

such counter counter-deception is the use of fake honeypots which supports the 

notion of achieving victory at a minimal cost. 

 



 37 

APPENDIX A: IPTABLES AND SNORT CONFIGURATION  

This set of configuration commands assumes that the current system is 

preinstalled with the required modules to run Iptables and Snort Inline.  By 

running this set of commands, we configured the system into a Level II or III 

system. 

 

1. By default, all traffic flowing to the kernel and back to user space must be 
intercepted by Iptables and passed to Snort Inline for processing.  Iptables 
accomplishes this by pushing the data into a queue using the ip_queue 
module.  You can load ip_queue and verify its presence as follows 

 
     modprobe ip_queue 
     lsmod | grep ip_queue 
 
2. For a Level II system, set Iptables to intercept all inbound and outbound ICMP 

traffic and place them in the QUEUE object. 
 
     iptables -I INPUT -p icmp -j QUEUE 
     iptables -I OUTPUT -p icmp -j QUEUE 
 

For a Level III system, set Iptables to intercept all forwarding traffic (both 
inbound and outbound) and place them in the QUEUE object. 

 
     iptables -I FORWARD -j QUEUE 
 
      To delete the topmost rule,   
 
     iptables -D INPUT 1 
 
      Note that upon reboot, all settings above are lost! 
 
3. List Iptables to confirm insertion of the rule above 
 
     iptables -L INPUT 
 
4. The corresponding configuration to enable a Level II or III system is to 

configure the Snort rules in Appendix B.  Note that every time you change the 
rules, you must restart Snort Inline for changes to take effect.  
 

 



 38 

5. Once the configuration above has been done, start Snort Inline as follows. 
 
     snort_inline -Q -i eth0 -v -c /etc/snort_inline/snort_inline.conf 
-l /var/log/snort_inline/ -D 
 

   -Q: receive packets from Iptables-QUEUE, 
   -i: network interface to sniff, 
   -v: verbose mode,  
   -c: configuration file,  
   -l: log file, 
   -D: daemon mode 
 

6. For additional network data capture, we can run Tcpdump as follows. 
 
     tcpdump -i 1 -n -N -s 0 -v -U -C 15 -w /home/tcpdump/0201-1610- & 
 

-i 1: listen to interface 1; use "tcpdump -D" to determine what is interface 1. 
-n: do not do name resolution 
-N: do not use fqdn 
-s 0: capture full packet 
-v: verbose mode 
-U: write to file directly instead of the buffer 
-C 15: limit each output file to (approx) 15MB for quick loading in WireShark 
-w /home/tcpdump/0201-1610-: output file path + name 
&: run in background mode 
 
Type "exit" the next line to close window without killing the Tcpdump process 
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APPENDIX B: SNORT RULES 

For the Level I experiment, we used the rules that come with the default 

Snort installation.  These rules are used in combination with the following ones 

for our Level II and III experiments.   

 
The rules below enable a Level II system by blocking ICMP traffic. 
 

drop icmp $EXTERNAL_NET any -> $HOME_NET any 
(classtype:attempted-recon; msg:"Drop ICMP Request"; itype:8;) 

 
drop icmp $HOME_NET any -> $EXTERNAL_NET any(classtype:attempted 
recon; msg:"Drop ICMP outbound";) 

 
The four rules below enable intrusion deception on a Level III system. The one 
immediately below replaces the FTP return code and words in the return 
message as discussed in Chapter 4. 
 

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (classtype:bad-
unknown; msg:"Replace FTP Bad login"; 
flow:from_server,established; content:"530 "; replace:"331 "; 
isdataat:1, relative; content:"cannot log in."; replace:"logged 
in.    "; pcre:"/^530\s+(Login|User)/smi"; sid:491; rev:8;) 

 
The rule below replaces the SMB error code of “C0” to no error which is “00”. 
 

alert tcp $HOME_NET 445 -> $EXTERNAL_NET any (msg:"Replace 
NETBIOS SMB-DS repeated logon failure"; 
flow:from_server,established; content:"|FF|SMB"; depth:4; 
offset:4; content:"s"; within:1; content:"m|00 00 C0|"; 
replace:"m|00 00 00|"; within:4; classtype:unsuccessful-user; 
sid:2924; rev:3;) 

 
The rule below replaces the DCERPC protocol version number of “5.0.0” to an 
invalid one represented by the hexadecimal “88 88 88”. 
 

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"Replace 
NETBIOS DCERPC inbound"; flow:established,to_server; content:"|05 
00 00|"; replace: "|88 88 88|"; classtype:protocol-command-
decode; sid:9601; rev:2;) 

 
The rule below replaces the DCERPC command represented by the hexadecimal 
“0B 00 01 1C” to an invalid one. 
 

alert tcp $HOME_NET 135 -> $EXTERNAL_NET any (msg:"Replace 
NETBIOS DCERPC outbound"; content:"|0B 00 01 1C|"; replace:"|88 
88 88 88|"; classtype:protocol-command-decode; sid:9601;) 
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