
Calhoun: The NPS Institutional Archive

Theses and Dissertations Thesis Collection

2007-03

Intrusion deception in defense of computer systems

Goh, Han Chong

Monterey, California. Naval Postgraduate School

http://hdl.handle.net/10945/3534

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

INTRUSION DECEPTION
IN DEFENSE OF COMPUTER SYSTEMS

by

Han Chong Goh

March 2007

 Thesis Advisor: Neil C. Rowe
 Second Reader: Daniel F. Warren

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
March 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Intrusion Deception in Defense of Computer
Systems
6. AUTHOR(S) Han Chong Goh

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
We investigate deception in response to cyber-intrusion or trespassing on computer systems. We

present a Response Framework that categorizes the types of response we can employ against intruders
and show how “intrusion deception” has its place in this framework. To experiment, we put together tools
and technologies such as Snort, VMware, and honeynets in a testbed open to attacks from the Internet.
We wrote some Snort rules and ran Snort in inline mode to deceptively manipulate packets of attackers.
Our results showed that attackers did react to our deceptions in some interesting ways, suggesting that
intrusion deception is a viable response to intrusion.

15. NUMBER OF
PAGES

59

14. SUBJECT TERMS Deception, Intrusion Detection Systems, Intrusion Prevention
Systems, Active Response Systems, Honeynet, Snort, VMware

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

INTRUSION DECEPTION IN DEFENSE OF COMPUTER SYSTEMS

Han Chong Goh
Civilian, Singapore Defence Science & Technology Agency

B.S., National University of Singapore, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2007

Author: Han Chong Goh

Approved by: Neil C. Rowe
Thesis Advisor

Daniel F. Warren
Second Reader

Peter J. Denning
Chairman, Department of Computer Science

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

We investigate deception in response to cyber-intrusion or trespassing on

computer systems. We present a Response Framework that categorizes the

types of response we can employ against intruders and show how “intrusion

deception” has its place in this framework. To experiment, we put together tools

and technologies such as Snort, VMware, and honeynets in a testbed open to

attacks from the Internet. We wrote some Snort rules and ran Snort in inline

mode to deceptively manipulate packets of attackers. Our results showed that

attackers did react to our deceptions in some interesting ways, suggesting that

intrusion deception is a viable response to intrusion.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION... 1
A. CYBER-INTRUSION.. 1
B. LIMITATIONS OF CURRENT RESPONSES....................................... 1
C. OTHER POSSIBLE RESPONSES... 2
D. THESIS ORGANIZATION.. 3

II. PREVIOUS WORK ... 5
A. DECEPTION TOOLKIT.. 5
B. LABREA TARPIT... 6
C. HONEYPOTS AND ANTI-HONEYPOTS ... 6
D. SNORT... 7
E. IMMUNOLOGY .. 8
F. COMPARISON TO OUR APPROACH .. 9

III. APPLICATIONS ... 11
A. RESPONSE FRAMEWORK .. 11
B. RESPONSE LEVELS... 12
C. ASSUMPTIONS ... 14

IV. METHODOLOGY.. 15
A. SETUP ... 15
B. RULE DEVELOPMENT ... 17
C. EXPERIMENTATION... 21

V. RESULTS ANALYSIS .. 23
A. LEVEL 0: PATCHED VS. UNPATCHED ... 25
B. LEVEL I: STEADY-STATE SYSTEM... 27
C. LEVEL II: BLOCKING SYSTEM.. 28
D. LEVEL III: DECEPTIVE SYSTEM.. 30

VI. CONCLUSIONS.. 33
A. ACHIEVEMENTS... 33
B. WEAKNESSES.. 35
C. FUTURE WORK... 36

APPENDIX A: IPTABLES AND SNORT CONFIGURATION.................................. 37

APPENDIX B: SNORT RULES ... 39

LIST OF REFERENCES.. 41

INITIAL DISTRIBUTION LIST ... 43

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF FIGURES

Figure 1. Response Framework .. 11
Figure 2. Escalating Response Levels .. 12
Figure 3. Learning Testbed.. 16
Figure 4. Packet flows and chains under Iptables ... 19
Figure 5. Alerts clustered by time, sequences, and K-Means properties........... 23
Figure 6. Effects of deception on duration of FTP attacks 32
Figure 7. Statistics on Intrusions across Response Levels................................ 33
Figure 8. Statistics on Intrusions Groups across Response Levels 34

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. List of excluded intrusion types .. 24
Table 2. Normalized results of an unpatched system....................................... 25
Table 3. Normalized results of a patched system... 25
Table 4. Results of an unpatched system by intrusion groups 26
Table 5. Results of a patched system by intrusion groups 26
Table 6. Normalized results of a steady-state system 27
Table 7. Results of a steady-state system by intrusion groups......................... 28
Table 8. Normalized results of a blocking system .. 29
Table 9. Results of a blocking system by intrusion groups............................... 29
Table 10. Normalized results of a deceptive system .. 30
Table 11. Results of a deceptive system by intrusion groups............................. 31

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I am grateful to my thesis advisor, Professor Neil Rowe, for his constant

mentorship and unyielding passion in this field of research. I also thank Chris

Eagle and Richard Harkins for extending the use of the Internet leased line and

the physical lab space respectively for the purpose of this research. Without your

kind support, I would not have completed this thesis.

In addition, I would like to recognize the Master’s work done by those who

have gone before me, Binh Duong and Harry Lim, who laid the foundations of

this thesis. I also acknowledge the staff of Naval Postgraduate School for

contributing to the success of this thesis. They range from the ITACS to the

Thesis Processing Office and down to our very own Department Education

Coordinator, Ms. Jean Brennan.

Lastly, all these would not have been possible if not for the tremendous

support that I have from my wife, Aileen, and my toddler daughter, Anne

Catherine, who continually inspire and motivate me.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. CYBER-INTRUSION
Malicious hacking has been a perennial problem from the days of

wardialing and phone phreaking to the present day of “script kiddies” and

underground “blackhats.” In the early days, very little was known about these

cyber-intruders, let alone tools to detect and prevent their attacks. Today we

depend primarily on our access control and other security policies to prevent

unauthorized access. Hardening and patching our systems with the latest

service packs and “hot fixes” can further deter intruders. In addition, we also

have fairly mature technologies in intrusion detection systems and intrusion

prevention systems that react accordingly as a second line of defense should an

intrusion occur.

According to the 2006 CSI/FBI Computer Crime and Security Survey [1],

the use of intrusion detection systems is at 69% and this has maintained fairly

stable over the years. Usage is also measured as fairly stable for other mature

technologies such as the use of firewalls, anti-virus software and server-based

access control lists. Yet the top two sources of financial losses continue to be

attributed to virus attacks and unauthorized access to information. On the other

hand, the use of intrusion prevention systems has increased to 43% from 35% in

the previous year. We argue that more advances need to take place as the

intrusion prevention technology grows and matures so that it can be more

effective in responding to intrusions.

B. LIMITATIONS OF CURRENT RESPONSES
The current efforts of intrusion detection and intrusion prevention against

cyber-intrusion can be limited. Intrusion detection systems are passive in nature

and exist only to alert the administrator of possible intrusions. Further analyses

are required to ascertain the validity of the alert and very often we are bogged

 2

down by the sheer number of such alerts. In general, intrusion detection systems

do not respond directly to the intruder.

Intrusion prevention systems essentially work the same way as intrusion

detection systems except that they have the additional capability to block

potentially malicious traffic. Some intrusion prevention systems can dynamically

reconfigure the firewall or specific host systems to tighten their security in

response to the intrusion [2]. Although these responses are active, they are

restricted to entities within the organization and are defensive in nature.

We do not dispute the respective roles of hardening, patching, intrusion

detection, and intrusion prevention in our suite of responses to malicious

intruders. Hardening and patching our systems are like the helmets and

protective gear used in the military for basic protection against the adversary.

There is also a need for outposts and blockades to detect and deter potential

intruders. This is where intrusion detection and intrusion prevention fit in the

framework of intrusion responses.

C. OTHER POSSIBLE RESPONSES
Consider two other possibilities in response to intruders, namely,

deception and counterattack. Responding to an intrusion with a counterattack,

however, may not be legally justified and it may also cause unintended collateral

damage to innocent bystanders [3]. It is similar to the use of disproportionate

and unnecessary force to bombard an intruder with artillery shells while causing

inadvertent damage to civilians in the vicinity. Due to these ethical and legal

issues, we will not consider counterattack responses even though there may be

situations that render such courses of actions viable.

Deception serves to confuse, delay or even just to frustrate the adversary.

Following the same analogy to conventional military operations, we view

deception akin to military employment of ruses and wit to deter or even entrap

 3

intruders. This approach gives us a rich set of alternative techniques for intrusion

deception which we can add to our framework of responses.

To develop such deceptive techniques, we need to study and understand

how our potential adversaries conduct their business. The Honeynet Project was

formed to develop tools and technologies to capture and study intruders who

break into a network of decoy machines known as honeypots. It is worthy to note

that a honeypot by itself is also a deception. Through the use of this deception,

we study the behavior of intruders and develop deceptive techniques to foil their

future intrusions.

D. THESIS ORGANIZATION
This thesis is organized into six chapters. Chapter II will survey the

previous work done on topics related to intrusion deception. We discuss the

possible applications of it and its place in the framework of intrusion responses in

Chapter III. In Chapter IV, we present the methodology behind our work with

intrusion deception. We analyze the results of our experiments in Chapter V

before concluding in Chapter VI.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. PREVIOUS WORK

Sun Tzu, the military strategist in medieval China, endorsed the use of

deception during battle. His reasoning is twofold: to obtain a swift victory and to

achieve it at a minimal loss of lives or casualties from his army. Accordingly, it

makes sense to apply deception-related concepts in our battles against cyber-

intrusion. We shall discuss a few works by our predecessors in this chapter.

A. DECEPTION TOOLKIT
Cohen published a seminal paper introducing the use of deception in

information protection [3]. In the paper, he draws many parallels to the use of

deception tactics in a military context. These tactics can be broadly classified as

concealment, camouflage, false and planted information, ruses, displays,

demonstrations, feints, lies, and insight [4].

At the same time, he made freely available a Deception Toolkit (DTK)

which was a software designed to enable intrusion deception. The host server

running DTK appears to intruders to have a large number of widely known

vulnerabilities. DTK listens for inputs from intruders and provides seemingly

normal responses that further confuse or delay them. For example, a fake

password file can be provided to the intruder who will have to spend CPU cycles

cracking the passwords before finding out that they are useless anyway. In this

way, DTK increases the workload of the intruder and serves to frustrate and

eventually deter them.

The output responses issued by DTK to the intruder are also

programmable, but need an in-depth understanding of the protocol that the

intruder chooses to exploit. The last update to DTK was on August 1999.

 6

B. LABREA TARPIT
Liston had the idea of a “sticky honeypot” in response to the CodeRed

worm [5]. The resulting software, the LaBrea Tarpit, creates virtual servers that

seem to reside on the unused IP (Internet Protocol) addresses of an

organization’s allotted IP space. These servers delay intruders by answering

connection attempts so that the intruders get "stuck," sometimes for a very long

time. Thus the software acts like a tar pit.

This form of deception is very similar to those of DTK except that LaBrea

Tarpit specializes only on the TCP connections that an intruder makes while

probing a victim network. Since then, other “tarpit” technologies have surfaced.

These include SMTP tarpits and IP-level tarpits as implemented by Iptables in

Linux kernels.

Developments on LaBrea Tarpit came to a halt in 2003 because of

concerns about the DMCA (Digital Millennium Copyright Act) which indirectly

made the software an unlawful communication device. This highlights the very

real ethical and legal issues that come with using deception even for the purpose

of defending our networks.

C. HONEYPOTS AND ANTI-HONEYPOTS
When the Honeynet Project was initially formed it was loosely comprised

of security experts who wanted to learn more about how intruders operate and to

develop tools and techniques to enable that [6]. Today, the organization

comprises of active members from the security community and is still led its

founder and security authority, Spitzner. In addition, the Honeynet Research

Alliance brings together different independent organizations from around the

world that are interested in honeynet research.

A honeynet is a network of honeypot machines used to create an

environment where the tools and behaviors of intruders can be captured and

studied. Evolving over three generations, the Honeynet Project’s honeynet

 7

architecture consists of three main components: the honeypots that attract the

intruders, the gateway that provides data control and data capture, and the

remote alert/log server. The specifics of the honeynet methodology, techniques,

and tools are well documented in their book.

A honeynet by itself does not provide a response to the intruder. On the

other hand, in a more sophisticated intrusion prevention scenario, an intruder can

be lured using the actual production server as bait and switched or redirected to

a honeypot server acting as a decoy target [7]. Our works departs from this

model as we use the honeynet technology solely as a framework in which we can

study the intruders and experiment with deceptive responses.

As the honeypot technology matures and becomes more pervasive, there

is also increasing interests in detecting the presence of honeypots [8]. Such anti-

honeypot techniques focused on examining peculiarities of honeypots such as

User-mode Linux, VMware, additional defenses like chroot() and jail(), timing

issues, and detecting debuggers. Another interesting development to anti-

honeypot technologies is in the area of spamming [9]. As spammers increasingly

face the challenge of having their bulk mail channeled to honeypots, they react

by creating tools such as the Honeypot Hunter to help them avoid the bait.

These developments can be classified as a kind counter-deception and our

responses to them as counter counter-deception [10].

D. SNORT
In 1999, Roesch created a “simple, lightweight, and open-source” network

intrusion detection system, Snort [11], for small networks. Today, Snort has

evolved to become the de facto standard in intrusion detection and intrusion

prevention technologies. He was a member of the initial Honeynet Project and

Snort was used as one of the data capture mechanisms in its honeynet

architecture.

 8

The Snort architecture has three components: packet decoder, detection

engine, and the logging and alerting subsystem. In addition, Snort depends on

the libpcap library to enable its promiscuous packet sniffing and filtering

capabilities. The key to successful detection is rules which define the intrusion

signature and the action to take if a rule fires.

If a rule action is configured to “log” or “alert,” Snort essentially operates

as an intrusion-detection system. Later versions of Snort allow it to operate in

inline mode and the rule actions are extended to “drop” and “reject,” making

Snort function as an intrusion prevention system. In addition, there is also a

“replace” rule option that modifies packets as they traverse the network. Our

interest in Snort lies in this packet-mangling capability of Snort Inline that enables

intrusion deception.

E. IMMUNOLOGY
Somayaji and Forrest introduced a kind of automated response that

models computer defenses based on the immune system [12]. The proposed pH

(process Homeostasis) system monitors all system calls thereby emulating the

immune system. It then either delays or aborts system calls if they were deemed

to be anomalous, very much like the way antibodies neutralizes the harmful virus.

In order to determine whether an anomaly has occurred, there is a training

phase where the pH system learns what constitutes normal behavior. The

amount of delay is governed by the locality frame count or the records of the

recent anomalous system calls. If the locality frame count passes a certain

threshold, then all anomalous system calls are aborted.

This form of immunological responses is essentially contained within the

system. It does not interact with the intruder directly and hence can be viewed

as a defensive approach. Yet at the same time, it also employs some form of

deception to delay the intruder.

 9

F. COMPARISON TO OUR APPROACH
We view our work as continuing these efforts with some differences. We

use a patched server without any additions, allowing the attacker to see and

interact with the system as is. We also use only one IP address for each

honeypot server that we put online leaving the unused IP addresses unoccupied.

We do not apply any countermeasures against anti-honeypot technologies

although this can be an area of refinement that we can explore in the future.

In addition, we prefer to leverage existing software that has the ability to

achieve some level of deception. In particular, we use Snort as an intrusion-

detection system and experiment with its intrusion-prevention capabilities. The

idea is to modify existing Snort detection rules and change them into deception

rules. In this way, we achieve the programmability of DTK without going into the

details of the protocol being exploited by the intruder.

Lastly, we want to experiment with deception that interacts with the

intruder in a somewhat offensive manner. We do not want to restrict ourselves to

defensive deceptions such as those used in the pH system. Our Response

Framework in the next chapter categorizes the various responses to intrusion

and shows how intrusion deception can be a viable alternative to existing

responses.

 10

THIS PAGE INTENTIONALLY LEFT BLANK

 11

III. APPLICATIONS

A. RESPONSE FRAMEWORK
We present a framework for intrusion responses that is currently employed

today and also that we propose in this thesis (Figure 1). The matrix in the

framework categorizes the responses based on whether they are active or

passive, and whether they are defensive or offensive in nature. This classifies

the responses such as detect, block, tighten, deceive, and counterattack into four

possible categories of responses:

Nature of
Response

Defensive Offensive

Passive Detect Deceive

Active
Block

Tighten

Deceive

Counterattack

Figure 1. Response Framework

Intrusion-detection systems serve only to detect intrusions and hence are

truly passive-defensive in nature. Intrusion-prevention systems essentially use

blocking mechanisms to prevent intrusions once they are detected. Some

intrusion-prevention systems can even tighten the firewall or host systems

depending on the vulnerability the detected intrusion aims to exploit. Yet other

intrusion-prevention systems mangle with the malicious network packets to

render them harmless once they enter the internal network. Interestingly, this is

a form of deception of the internal servers into thinking that all is well. Although

all these dynamic measures are active, they are all restricted within the internal

boundary and hence are defensive. Thus, intrusion-preventive responses are

mainly active-defensive in nature.

The upper right cell in the matrix represents a class of responses that are

passive yet offensive at the same time. This may seem contradictory but we

view passive-offensive as aptly describing the very nature of deception. Contrast

these with active-defensive ones, such deceptions are not restricted within the

internal boundary. They act on outgoing traffic to deceive the intruder, usually in

response to malicious requests made by the intruder.

Finally, the last cell can be viewed as a true act of aggression

representing responses that are actively on the offensive. These responses are

often left as the last resort and are activated only under exigent circumstances.

Such scenarios are plentiful in the conventional military context but we must

tread carefully when taking the course of counterattack in response to intrusion in

cyberspace.

B. RESPONSE LEVELS

 12

Figure 2. Escalating Response Levels

We can also view our Response Framework as a series of escalating

levels (Figure 2). Our Level I response to intrusion is to detect it. When we find

out more about the nature of the intrusion, we may then proceed to Level II

responses. With the ability to identify previous intrusions, we can block similar

future occurrences. We may also tighten our own defenses to remove known

Detect

I

Block

Tighten
Deceive

II

Deceive

Counter-

attack

IV III

 13

vulnerabilities. In addition, we may employ some form of deception on the

incoming intruder so that they do not end up damaging our assets.

If the intrusions still persist despite all our access controls, we may then

proceed to Level III deceptions. The intent of these responses is to confuse,

delay, and frustrate, but not directly attack the intruder. We do this in the hope of

attaining a swift victory at a minimal cost. If this does not deter or divert the

intruder, we will then have to consider our Level IV options. Our counterattack

must be minimal and proportionate to the force in which the violating intrusion

had applied. Prior to the declaration of an all-out war, we must only be seen as

using a reasonable and restrained level of force in defense of our assets. As the

aggression continues to escalate and hostile intent has been demonstrated, we

may then be on the full offensive. Our response could be to launch malicious

counterattacks on the system originating the intrusions or even its neighbors

depending on the threat level.

The Response Levels can indicate different levels of an organization’s

ROE (Rules of Engagement) in response to intrusion threats. Under normal non-

hostile conditions, an organization’s ROE level would be Level I. With the

occurrences of confirmed intrusions, the ROE level can then be upgraded

accordingly.

Intrusion-detection and intrusion-prevention vendor products can also be

similarly rated. For example, intrusion-detection systems are typically Level I

products while current intrusion-prevention systems are Level II products. An

organization’s ability to react to the various ROE levels depends largely on the

availability of suitable enabling tools. Intrusion deception plays a crucial role in

pushing the current boundaries of intrusion-prevention technology and taking

intrusion responses to the next levels.

 14

C. ASSUMPTIONS
Besides technical issues, an important barrier to the advancement of

intrusion-prevention technologies to Levels III or IV is the legal and ethical issues

with deception and counterattack. In addition, the Internet space cut across

international boundaries that span a variety of laws and constitutions that further

complicate the employment of these measures. If some common code of

conduct such as the Geneva Conventions can be adopted, then we can achieve

a certain level of understanding when employing Level III and IV technologies.

However, this does not resolve all of the legal and ethical issues any more than

the Geneva Conventions did to the conduct of war.

Leaving legality and ethics aside, Level III deceptions can themselves

create problems on real production servers. This is because a production server

is supposed to be truthful and provide services in accordance to the standards

and protocols that govern its services. Fortunately, there are technologies such

as the “bait and switch” honeypot that redirects the intruder to a decoy server

which can handle the deceptive responses.

The earlier discussion on the escalating Response Levels does not restrict

us from employing different technologies in parallel in a defense-in-depth

manner. We still need helmets and protective gear for basic protection, and also

outposts and blockades as a second line of defense. In addition, we now have a

new set of defenses to respond to intruders at Levels III and IV.

 15

IV. METHODOLOGY

We break down our work on intrusion deception into three distinct phases,

namely, setup, rule development, and experimentation. The setup phase

involved studying the intruders and their exploit methods. We targeted the

common intrusion exploits that we collected in the setup phase and developed

corresponding deceptive rules to test in the experimentation phase. This process

is cyclical in nature as the results of the experimentation provide feedback to fine

tune the rules.

A. SETUP
We set up our testbed (Figure 3) in the first phase. Most of the setup was

done in the thesis of Binh Duong [13]. The three components of the setup

correspond to the honeynet architecture discussed in Chapter 2. The testbed

makes use of virtualization software to run the different honeypots. We take a

hybrid approach in which the virtual honeypots are hosted in one physical

machine while the gateway and remote alert/log servers are hosted in two other

machines.

The honeynet machine runs VMware that hosts two virtual machines a

Windows 2000 Server and a Windows XP machine. The router machine serves

as the gateway and channels traffic from the Internet to the honeynet and vice

versa. Data capture is also done on the router machine by running Snort in

intrusion-detection mode. The alerts are logged locally and also sent to a remote

Postgres database that is inaccessible from the Internet. As Snort listens to the

network in promiscuous mode, we encountered alerts that were meant for

servers on the network other than our setup. One way to eliminate these alerts is

to configure Snort to restrict its processing only to the IP address of the router

machine instead of a subnet of addresses. However, we chose to keep these

secondary alerts for better situational awareness and filter them out through

structured queries on the database when necessary.

Figure 3. Learning Testbed

We ran this testbed for about a year and observed the number and types

of Snort alerts that took place. The default Snort configuration had did not

differentiate between the external network and the home network. This resulted

in alerts that were false positives such as the MS-SQL outbound alerts that were

triggered even though the intrusion was clearly inbound. We rectified the

configuration by setting the home and external network accordingly. From these

 16

 17

numerous observations, we created a list of exploits used frequently by intruders.

This list forms a base set of exploits for experiments with intrusion deception.

We took precautions such that should our honeypots become

compromised, they will not be used by the intruder as a launch pad to spread

further attacks. This is achieved by regularly monitoring the states and

processes on the honeypots. We also blocked traffic generated by our

honeypots to external IP addresses that seem to be probing other networks.

These were systematic sets of network messages destined for external

addresses that varied only in the last octet and occurred within a second. In the

event that our honeypots are compromised, it is easy to restore to a clean state

with the use of VMware but we only did this a few times in the year we ran the

honeynet.

B. RULE DEVELOPMENT
 As noted earlier, we want to experiment with the deception capabilities of

Snort running in “inline” mode. This runs Snort as a simple intrusion-prevention

system instead of the default intrusion-detection mode. Inline mode requires two

additional packages, Iptables and Libnet. Iptables is used to intercept network

packets from the network interface card and then pass them along from the

kernel space to the user space for Snort to process. Packets not intercepted by

Iptables are of no interest to Snort Inline and they proceed on to their intended

destination. Libnet is a set of high level APIs that allows Snort to construct and

inject network packets. We still need to write Snort rules to enable intrusion

deception. The design of the Snort rules must be done in tandem with the

Iptables configuration. It would be easy to configure Iptables such that it would

intercept all packets and let Snort process them, but this would be very slow. So

we should configure Iptables to be an effective prefilter for Snort. On the other

hand, Snort rules should only affect network packets captured by the Iptables

configuration, so we need to verify the Iptables configuration whenever make

changes to the rules.

 18

 We will present a few examples to illustrate the subtle relationship

between Iptables and Snort. Say we want to intercept all inbound ICMP traffic

through Iptables so that we can direct Snort Inline to drop these packets. We

would need a rule in the default Filter table in Iptables as:

iptables -I INPUT -p icmp -j QUEUE

This inserts the rule at the top of the rule set in the INPUT rule chain, giving it the

highest priority on that chain. The rule intercepts incoming network packets of

the ICMP protocol and passes them on or jumps to a Snort accessible object

called the QUEUE. The corresponding Snort rule would be:

drop icmp $EXTERNAL_NET any -> $HOME_NET any (…)

The drop rule action will not pass any incoming ICMP packets from external

origins on to the operating system thus blocking inbound ICMP traffic.

To set up the configuration to block outgoing ICMP packets, the rules for

Iptables and Snort would be:

iptables -I OUTPUT -p icmp -j QUEUE

drop icmp $HOME_NET any -> $EXTERNAL_NET any (…)

Note that we now apply the rule on the OUTPUT rule chain in Iptables and the

directionality is reversed in the Snort rule.

As packets traverse the different chains under the filter table in Iptables,

they take different packet flow paths (Figure 4). There are two other tables, Nat

and Mangle, with their respective chains under Iptables. The Nat table is meant

for network address translation while the Mange table does low-level packet

mangling such as that of the TOS (Type of Service) field. For our purposes, we

only needed to configure the Filter table which is meant for traffic filtering.

Figure 4. Packet flows and chains under Iptables

The “Local Processes” node represents the processes that run on our

router machine. The router machine is assigned the public IP address that is

accessible on the Internet. Therefore, when an incoming ICMP packet reaches

the network interface card, Iptables checks if the packet requires routing. In this

case the router machine itself will answer to the ICMP request and hence it does

not require further routing. The packet is passed on to the INPUT chain and

Iptables will run the packet through the filtering rules in that chain. The filtering

rules then decide to pass or drop the packets. The flow is the same if the router

machine is sending outgoing ICMP packets except that now they pass through

the OUTPUT chain.

Due to the peculiarity of our testbed, traffic destined for our honeynet will

be routed accordingly by the router machine. In this case, the final destination is

not the router machine and hence the traffic will not pass through the INPUT or

 19

 20

OUTPUT chains but through the FORWARD chain instead. To illustrate, if we

want to drop outbound probes for port 135 on external IP addresses, the

respective rules for Iptables and Snort would be:

iptables -I FORWARD -p tcp –-dport 135 –s X.X.X.X/24 -j QUEUE

drop tcp $HOME_NET any -> $EXTERNAL_NET 135 (…)

The Iptables rule captures routed traffic TCP that comes from our honeynet and

is destined for port 135 of any IP address. The Snort rule acts on the same

traffic and drops it accordingly.

Our Snort rules so far have only used the action “drop” making Snort just

an intrusion prevention system. We show an example of using the “replace”

option in the rule to enable intrusion-deception.

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (content:"530 ";

replace:"331 "; isdataat:1, relative; content:"cannot log in";

replace:"logged in. ";)

This Snort rule acts on FTP (File-Transfer Protocol) responses from our

honeynet to the any FTP client on the Internet. The “alert” rule action seems to

be running Snort in intrusion-detection mode. However, the “replace” rule option

is used (twice in this case) to make Snort run as a Level III system. The first

“replace” substitutes the FTP return code “530” with “331”. The FTP client will be

deceived into interpreting the response “331” as “User name okay, need

password” instead of “530” which is “User X cannot log in”. The second “replace”

substitutes the message associated with the return code “530” with that

associated with the code “230 – User X logged in”. Note that there are trailing

spaces in the second “replace” because the implementation in Snort requires an

exact number of characters to be substituted. The option “isdataat” takes care of

the “User X” string that appears after the return code but before the string

“cannot log in”. In essence, there are two deceptions that take place here. One

is with the FTP return code, while the other is with the return message. It is not

necessary to synchronize both deceptions and we do this in the hope of

confusing the intruder.

 21

Although Snort in intrusion-detection mode was already in place during the

setup phase, we ran another instance of Snort on the router machine in intrusion-

deception mode to accomplish the packet-manipulation rules. We also set up a

corresponding database to receive alerts from the second instance of Snort. In

addition, it has become apparent over time that we need a different set of clues

other than the Snort alerts as a cross reference in aid of a more complete

forensic analysis [14]. As a result, we also ran a full packet capture using

Tcpdump on all the network traffic arriving at the router machine. The details of

configuring Iptables and the various command line options to run Snort Inline and

Tcpdump can be found in Appendix A.

C. EXPERIMENTATION
Having set up Snort Inline, we developed several types of deceptive rules

we could use. In particular, we wanted to compare across the Response Levels.

This led us to group experiments in terms of Level I, Level II, and, Level III

responses. In addition, we also experimented with the effects of operating

system patching which is a Level 0 response.

As we had a single honeynet, we successively reused the same setup for

each experiment but made modifications to reflect the correct Response Level.

The nature of intrusion attempts generated by each of these Response Levels

provides us with a comparison across levels. Specifically, we looked at the

counts and variety of intrusion types over the period of time when a particular

Response Level was active. The counts are the number of intrusions while the

variety is the number of distinct intrusion types. For a more detailed analysis, we

break down the intrusion counts into five major intrusion groups and study how

the counts in these groups are affected by the different Response Levels.

For the Level 0 experiment, we set up a honeypot with Windows 2000

Advanced Server without any service packs or patches. The honeypot was then

put online allowing intruders to interact with it. We collected a separate 36 hours

of intrusion data for each particular experiment. We ran each experiment several

 22

times to collect the mean and standard deviation of its statistics. As a control

experiment, we also perform the same experiments but updated the operating

system with the latest service pack and patches.

The Level 0 experiment examined the effects of introducing a newly

installed system on the Internet. In the Level I experiment, we let the setup

stabilize over a period of one week after it was first put online. This setup was no

longer novel to intruders and we used this to represent the typical system that

runs a Level I intrusion-detection system.

For the Level II experiment, we modified the Snort rules to drop ICMP

traffic going to and coming out of our honeynet. The purpose was to study the

effects of blocking reconnaissance activity on the subsequent actions of the

intruder. This setup was a kind of intrusion-prevention system.

Finally, we focused on intrusion deception for our Level III experiment.

We kept the rules from the Level II experiment but in addition, we changed the

rules to replace certain keywords in protocol messages with deceptive ones.

Such keywords can include return codes and substrings in return messages as

discussed in our file-transfer example earlier. Our strategy here was to delay the

intruder by faking protocol messages and codes. Another instance of our

deception was to change the protocol version or command number to an invalid

one. Here, we were hoping to confuse and discourage the intruder through the

breakdown in the protocol. The details of these deceptive rules are listed in

Appendix B. As a subexperiment, we also examined the effects of deceptive

responses on file-transfer intrusions.

V. RESULTS ANALYSIS

 Our initial findings from the alerts collected for the past year indicated that

the intruder behavior is affected significantly by our honeynet downtime [15]. We

clustered the data in three different ways and found that they all pointed to the

same conclusion; that intrusions spiked whenever our honeynet recovered from a

period of downtime (Figure 5, taken from [15]). The spikes occurred after weeks

twelve and twenty-six when we had just brought the honeynet online after a

period of maintenance. This led us to further investigate this finding through the

series of experiments that follow.

Figure 5. Alerts clustered by time, sequences, and K-Means properties

 23

 24

In tabulating the results we obtain from the various experiments, it was

helpful to remove some intrusion types that gave anomalous counts. This was

also done with the ICMP Unreachable backscatter [16] because their large

numbers would skew the data and prevent proper comparison. We list such

intrusion types (Table 1) and explain why they are excluded from the normalized

data. These intrusion types accounted for 98.7% of the raw counts for one run in

the Level 0 experiment where the honeypot was compromised and used by the

successful intruder to probe other networks. Counts were greatly inflated thus

indicating an anomaly.

S/No Intrusion Type Reason for exclusion

1. ICMP Destination Unreachable

Host Unreachable

2. ICMP Destination Unreachable

Port Unreachable

3. ICMP Destination Unreachable

Network Unreachable

These intrusion types reflect our

honeypot being used as a bot to probe

other networks and do not bear on the

actual successful intrusion.

4. ICMP redirect host

5. ICMP redirect net

These intrusion types were side effects

of the intrusion types above.

6. INFO FTP Bad login

7. NETBIOS SMB repeated logon

failure

These intrusion types were sporadic

and the counts varied widely depending

on whether the intruder was using an

automated tool and what kind if so.

Table 1. List of excluded intrusion types

 25

A. LEVEL 0: PATCHED VS. UNPATCHED

Run Count Variety

1 1219 20

2 937 18

3 1043 12

Mean 1066.33 16.

S.D 142.44 4.16

Table 2. Normalized results of an unpatched system

Run Count Variety

1 609 9

2 244 10

3 296 22

4 748 18

5 1150 19

Mean 609.40 15.60

S.D 368.51 5.77

Table 3. Normalized results of a patched system

The Level 0 experiment compared the effects of an outdated operating

system (Table 2) with an updated one (Table 3) after the system was brought

online. Comparing the data, we can see that the unpatched systems had higher

counts and variety (as defined in Chapter 4) with lower standard deviations. This

suggests that outdated operating systems are more likely to attract intruders than

updated ones. In addition, since there are more known vulnerabilities in outdated

operating systems, intruders have more leeway in choosing the type of attacks

 26

against it. These findings confirm the effectiveness of operating system

patching, a basic Level 0 response, against intrusion.

Run ICMP Ping
MS-SQL
Overflow

NETBIOS
Overflow

SHELLCODE
NOOP

Others

1 997 100 13 32 77
2 786 64 22 59 6
3 941 70 12 29 2

Mean 908.00 78.00 15.67 40.00 28.33

Table 4. Results of an unpatched system by intrusion groups

Run ICMP Ping
MS-SQL
Overflow

NETBIOS
Overflow

SHELLCODE
NOOP

Others

1 365 58 0 0 186

2 128 40 0 0 76

3 53 54 71 80 38

4 246 56 198 243 5

5 588 62 262 235 3

Mean 276.00 54.00 106.20 111.60 61.60

Table 5. Results of a patched system by intrusion groups

Next, we compared the intrusion counts for each of the five major intrusion

groups between the unpatched (Table 4) and the patched (Table 5) systems.

The ICMP Ping and MS-SQL overflow intrusion groups had a higher count for the

unpatched system. The reverse was true for the NETBIOS Overflow,

SHELLCODE NOOP, and Others intrusion groups. This suggests that the

 27

intruder typically conduct more ICMP type of reconnaissance on an unpatched

system. In addition, the preferred intrusion type for an unpatched system seems

to be from the MS-SQL group. On a patched system, however, the intruder

opted for more sophisticated and varied types of intrusion as seen in the

significant increase in the NETBIOS Overflow, SHELLCODE NOOP and Others

groups.

B. LEVEL I: STEADY-STATE SYSTEM

Run Count Variety

1 767 9

2 679 25

3 439 16

4 601 16

5 796 16

Mean 656.40 16.40

S.D 143.67 5.68

Table 6. Normalized results of a steady-state system

In the Level I experiment, we studied how intrusions on a system running

an intrusion-detection system has stabilized since it was first brought online

(Table 6). Comparing the data with a Level 0 patched system, we see that the

intrusions for the stabilized system increased slightly but had a significantly lower

standard deviation. The same applies to the variety of intrusion types. This

suggests that even if the system is patched, it is still subjected to attacks.

Moreover, the fact that it is still uncompromised over a week seems to encourage

more and varied intrusion attempts.

 28

Run ICMP Ping
MS-SQL
Overflow

NETBIOS
Overflow

SHELLCODE
NOOP

Others

1 521 58 0 0 188

2 148 58 172 151 150

3 144 64 129 88 14

4 277 58 137 128 1

5 640 52 37 54 13

Mean 346.00 58.00 95.00 84.20 73.20

Table 7. Results of a steady-state system by intrusion groups

We made a similar comparison between the patched and the steady-state

systems but this time on the intrusion groups (Table 7). There was a slight

increase in the ICMP Ping, MS-SQL Overflow, and Others intrusion groups. This

concurred with our earlier conclusion that a steady-state system is still subjected

to attacks. The focus now seems to be on ICMP reconnaissance and more

varied attacks under the Others group.

C. LEVEL II: BLOCKING SYSTEM
We observe a system running an intrusion-prevention system in our Level

II experiment (Table 8). Comparing it with the Level I system, we see that the

intrusion count increased significantly with a low standard deviation, but the

variety of intrusion types decreased with a lower standard deviation. This

suggests that blocking ICMP reconnaissance attempts from intruders only make

them more curious about compromising the system. However, the blocking

strategy seems to be effective in restricting the types of intrusions that occur.

 29

Run Count Variety

1 892 14

2 1016 10

3 1027 18

4 881 20

5 968 14

6 1244 17

7 933 17

8 917 11

Mean 984.75 15.13

S.D 117.65 3.48

Table 8. Normalized results of a blocking system

Run ICMP Ping
MS-SQL
Overflow

NETBIOS
Overflow

SHELLCODE
NOOP

Others

1 579 74 95 140 4

2 881 84 17 33 1

3 807 78 58 72 12

4 700 78 25 46 32

5 675 60 70 147 16

6 932 114 64 120 14

7 762 70 52 45 4

8 785 86 20 25 1

Mean 765.13 80.50 50.13 78.50 10.50

Table 9. Results of a blocking system by intrusion groups

 30

The count by intrusion groups also supported our conclusion about the

Level II system (Table 9). The ICMP Ping group more than doubled while the

MS-SQL Overflow group had a modest increase. The rest of the groups reported

decreases with the most significant drop in the Others group. The blocking

system was successful in reducing these intrusion groups but at the expense of

rousing the curiosity of intruders and causing more reconnaissance.

D. LEVEL III: DECEPTIVE SYSTEM
We examined a system running intrusion deception in our Level III

experiment (Table 10). Comparing it with the Level II system, we see that the

intrusion count has increased with a fairly low standard deviation. On the other

hand, the variety of intrusion types has decreased significantly with a low

standard deviation. This suggests that our deceptions seem to encourage more

intrusions possibly due to the confusion and delay that was caused by the

deceptive responses. However, our deceptions were more effective in restricting

the intrusion types than Level II blocking did.

Run Count Variety

1 987 15

2 971 14

3 776 13

4 1234 11

5 1526 15

6 1519 18

7 1356 14

Mean 1195.57 14.29

S.D 291.83 2.14

Table 10. Normalized results of a deceptive system

 31

The comparison by intrusion groups agreed with our discussion about the

Level III system (Table 11). Our deception targeted the NETBIOS Overflow thus

explaining its significant decrease. This also led to a consequential decrease in

the SHELLCODE NOOP group because these intrusions usually follow after

successful NETBIOS Overflow attempts. The intruder was thus forced to try

other means as shown by the increase in the ICMP reconnaissance, MS-SQL

Overflow and Others groups.

Run ICMP Ping
MS-SQL
Overflow

NETBIOS
Overflow

SHELLCODE
NOOP

Others

1 854 90 23 15 5

2 875 64 9 19 4

3 693 64 5 12 2

4 1081 132 6 8 7

5 1304 166 9 9 38

6 1123 154 55 124 63

7 1098 150 19 77 12

Mean 1004.00 117.14 18.00 37.71 18.71

Table 11. Results of a deceptive system by intrusion groups

We also examined the effects of our FTP deception on the duration of

logon attacks attempts. We charted the durations of FTP intrusions by eight

intruder IP addresses (Figure 5). This first shown with the dotted pattern fill

indicates a typical FTP intrusion on a Level II system; the remaining seven

occurred on a Level III system. Six out of these seven intrusions ended within

two hours; one where our deception was not successful in dissuading the

intrusion ended just less than five hours. The latter attack suggests an intruder

who uses automated tools to scan and conduct attacks. They probably let the

tool run without much monitoring and return some five hours later to check on

their yield. In all seven attempts on the Level III system, the intruder did not learn

anything about the password from the numerous logon attempts. The first FTP

intrusion on the Level II system, however, the intruder had learnt that the three

hours worth of password combinations tried so far do not work.

Figure 6. Effects of deception on duration of FTP attacks

 32

VI. CONCLUSIONS

A. ACHIEVEMENTS
We have shown that intruders are affected by the different responses to

their intrusions. We summarize our previous results in Figure 6 by plotting the

intrusion counts (left y-axis) and variety (right y-axis) across the different

Response Levels. The Level I system performs best at keeping the intrusion

counts at a stable low. As we go to Levels II and III, the intrusion count rises

although the Level III rise is not as much due to a higher standard deviation. At

the same time, the intrusion variety decreases at a slower rate. This suggests

the potential of Level II and III systems in dealing with intrusion types that Level I

systems cannot handle.

Figure 7. Statistics on Intrusions across Response Levels

 33

We also showed that the intruders’ choice of attack was affected by the

different Response Levels in use (Figure 8). We were successful in decreasing

the intrusions belonging to the NETBIOS Overflow, SHELLCODE NOOP, and

Others group as we moved from a patched Level 0 system to a Level III system.

The side effect of progressing up the levels is the increase in the intrusions

belonging to the ICMP PING and MS-SQL Overflow groups. We also note an

increase in the Others group with our Level III deceptive system as intruders are

forced to find other means of attack.

Figure 8. Statistics on Intrusions Groups across Response Levels

In summary, Level 0 experiments showed that patching our systems is

effective as a basic form of protection against intruders. On top of that, a Level I

response using intrusion-detection systems provides an effective layer of

secondary defense against intrusions. To respond to common intrusions that

 34

 35

take place even with Level I defenses in place, we can take advantage of Level II

and III responses.

As a subexperiment in Level III responses to FTP intrusions, we have also

shown that deception can attain a swift victory at a minimal cost against many

intruders. However, similar successes were not observed for deceptions for

other intrusion types as indicated by the high intrusion counts in our Level III

experiments.

B. WEAKNESSES
An important weakness of our Level III experiment was the limitations of

the “replace” capability in Snort: we could only substitute words with other words

of the same length. We also did not have time to try the pattern matching

capability with regular expressions that is in Snort. In addition, the “replace”

capability of Snort Inline is restricted to the application payload of the network

packet. This prevents us from changing header information such as the IP

address or the port number for some additional useful deceptions. This limits the

level of sophistication of our deceptions, and might explain the increase in

intrusion counts for our Level III experiment.

A weakness in our Level II experiment is that we only blocked ICMP

messages. The experiment would be more representative of a Level II system if

we blocked other intrusions as well. Lastly, our experiments were conducted

using the same IP address over a year. Over this time, seasoned intruders

would have learned and passed along information about the system on this IP

address. This may have affected the nature of intrusions that occurred on our

system even though it evolved from Level 0 to Level III over that time. It would

be a fairer comparison if we were to run parallel setups for Level 0 through Level

III on different IP addresses over the same time period.

 36

C. FUTURE WORK
Possible future work on intrusion deception could use more sophisticated

deceptions against the intruder. This could involve other tools with deception

capabilities instead of the “replace” feature in Snort. One possibility is to use the

packet mangling capabilities in Iptables which would allow us to modify packet

header information along with the payload. However, this would require

designing our deceptions at a fairly detailed level and an in-depth understanding

of the exploited protocol.

Other aspects of deception can also be explored. These include the tarpit

capability which is also inherent in Iptables. When experimenting with tarpit

deception, it is worthy to note that the objective is no longer to achieve a swift

victory but rather to delay the intruder. As such, a different set of metrics need to

be derived in order to compare its effectiveness across the Response Levels.

Finally, our deceptions can be detected and the intruder may take

measures to counter our deception. As a consequence, we also need to explore

what we can do to counter the intruder’s counter-deception. One possibility of

such counter counter-deception is the use of fake honeypots which supports the

notion of achieving victory at a minimal cost.

 37

APPENDIX A: IPTABLES AND SNORT CONFIGURATION

This set of configuration commands assumes that the current system is

preinstalled with the required modules to run Iptables and Snort Inline. By

running this set of commands, we configured the system into a Level II or III

system.

1. By default, all traffic flowing to the kernel and back to user space must be
intercepted by Iptables and passed to Snort Inline for processing. Iptables
accomplishes this by pushing the data into a queue using the ip_queue
module. You can load ip_queue and verify its presence as follows

 modprobe ip_queue
 lsmod | grep ip_queue

2. For a Level II system, set Iptables to intercept all inbound and outbound ICMP

traffic and place them in the QUEUE object.

 iptables -I INPUT -p icmp -j QUEUE
 iptables -I OUTPUT -p icmp -j QUEUE

For a Level III system, set Iptables to intercept all forwarding traffic (both
inbound and outbound) and place them in the QUEUE object.

 iptables -I FORWARD -j QUEUE

 To delete the topmost rule,

 iptables -D INPUT 1

 Note that upon reboot, all settings above are lost!

3. List Iptables to confirm insertion of the rule above

 iptables -L INPUT

4. The corresponding configuration to enable a Level II or III system is to

configure the Snort rules in Appendix B. Note that every time you change the
rules, you must restart Snort Inline for changes to take effect.

 38

5. Once the configuration above has been done, start Snort Inline as follows.

 snort_inline -Q -i eth0 -v -c /etc/snort_inline/snort_inline.conf
-l /var/log/snort_inline/ -D

 -Q: receive packets from Iptables-QUEUE,
 -i: network interface to sniff,
 -v: verbose mode,
 -c: configuration file,
 -l: log file,
 -D: daemon mode

6. For additional network data capture, we can run Tcpdump as follows.

 tcpdump -i 1 -n -N -s 0 -v -U -C 15 -w /home/tcpdump/0201-1610- &

-i 1: listen to interface 1; use "tcpdump -D" to determine what is interface 1.
-n: do not do name resolution
-N: do not use fqdn
-s 0: capture full packet
-v: verbose mode
-U: write to file directly instead of the buffer
-C 15: limit each output file to (approx) 15MB for quick loading in WireShark
-w /home/tcpdump/0201-1610-: output file path + name
&: run in background mode

Type "exit" the next line to close window without killing the Tcpdump process

 39

APPENDIX B: SNORT RULES

For the Level I experiment, we used the rules that come with the default

Snort installation. These rules are used in combination with the following ones

for our Level II and III experiments.

The rules below enable a Level II system by blocking ICMP traffic.

drop icmp $EXTERNAL_NET any -> $HOME_NET any
(classtype:attempted-recon; msg:"Drop ICMP Request"; itype:8;)

drop icmp $HOME_NET any -> $EXTERNAL_NET any(classtype:attempted
recon; msg:"Drop ICMP outbound";)

The four rules below enable intrusion deception on a Level III system. The one
immediately below replaces the FTP return code and words in the return
message as discussed in Chapter 4.

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (classtype:bad-
unknown; msg:"Replace FTP Bad login";
flow:from_server,established; content:"530 "; replace:"331 ";
isdataat:1, relative; content:"cannot log in."; replace:"logged
in. "; pcre:"/^530\s+(Login|User)/smi"; sid:491; rev:8;)

The rule below replaces the SMB error code of “C0” to no error which is “00”.

alert tcp $HOME_NET 445 -> $EXTERNAL_NET any (msg:"Replace
NETBIOS SMB-DS repeated logon failure";
flow:from_server,established; content:"|FF|SMB"; depth:4;
offset:4; content:"s"; within:1; content:"m|00 00 C0|";
replace:"m|00 00 00|"; within:4; classtype:unsuccessful-user;
sid:2924; rev:3;)

The rule below replaces the DCERPC protocol version number of “5.0.0” to an
invalid one represented by the hexadecimal “88 88 88”.

alert tcp $EXTERNAL_NET any -> $HOME_NET 135 (msg:"Replace
NETBIOS DCERPC inbound"; flow:established,to_server; content:"|05
00 00|"; replace: "|88 88 88|"; classtype:protocol-command-
decode; sid:9601; rev:2;)

The rule below replaces the DCERPC command represented by the hexadecimal
“0B 00 01 1C” to an invalid one.

alert tcp $HOME_NET 135 -> $EXTERNAL_NET any (msg:"Replace
NETBIOS DCERPC outbound"; content:"|0B 00 01 1C|"; replace:"|88
88 88 88|"; classtype:protocol-command-decode; sid:9601;)

 40

THIS PAGE INTENTIONALLY LEFT BLANK

 41

LIST OF REFERENCES

1. Gordon, L. A. and others. (2006). 2006 CSI/FBI Computer Crime and
Security Survey. Annual Survey, Computer Security Institute, San Francisco,
California.

2. Rash, M., and others. (2005). Intrusion Prevention and Active Response.
Rockland, Massachusetts: Syngress.

3. Himma K. E. (2004). The Ethics of Tracing Hacker Attacks through the
Machines of Innocent Persons. International Review of Information Ethics, Vol II,
Stuttgart, Germany.

3. Cohen, F. (1998). A Note on the Role of Deception in Information
Protection. White Paper, http://all.net/journal/deception/deception.html, accessed
Jan 2007.

4. Dunnigan, J. F., and Nofi, A. A. (2001). Victory and Deceit: Deception and
Trickery in War, Second Edition. San Jose, California: Writers Club Press.

5. Haig, L. (2003). LaBrea – A New Approach to Securing our Networks.
White Paper, SANS Institute, Bethesda, Maryland.

6. The Honeynet Project. (2004). Know Your Enemy: Learning about
Security Threats, Second Edition. Boston, Massachusetts: Addison-Wesley.

7. Northcutt, S., and Novak, J. (2002). Network Intrusion Detection, Third
Edition. Indianapolis, Indiana: New Riders.

8. Holtz, T., and Raynal, F. (2005). Detecting Honeypots and other
suspicious environments. Proc of the 2005 IEEE Workshop on Information
Assurance and Security, United States Military Academy, West Point, New York.

9. Krawetz, N. (2004). Anti-Honeypot Technology. The Honeynet Files, Vol.
2 Issue 1, IEEE Security & Privacy, Washington, District of Columbia.

10. Rowe, N. (2006). Measuring the effectiveness of honeypot counter-
counterdeception. Proc. 39th Hawaii International Conference on Systems
Sciences, Poipu, Hawaii.

11. Roesch, M. (1999). Snort - Lightweight Intrusion Detection for Networks.
Proc. of the 13th USENIX Conference on System Administration, Seattle,
Washington.

 42

12. Somayaji, A., and Forrest, S. (2000). Automated Response Using System-
Call Delays. Proceedings of the 9th USENIX Security Symposium, Denver,
Colorado.

13. Rowe, N., Duong, B., and Custy, E. (2006). Fake honeypots: a defensive
tactic for cyberspace. 7th IEEE Workshop on Information Assurance, West
Point, New York.

14. Jones, K. J., Bejtlich, R., and Rose, C. W. (2006). Real Digital Forensics:
Computer Security and Incident Response. Upper Saddle River, New Jersey:
Addison-Wesley.

15. Rowe, N., and others. (2007). Experiments with a testbed for automated
defensive deception planning for cyber-attacks. Proceedings of Second
International Conference on I-Warfare and Security, Monterey, California.

16. Pang, R., and others. (2004). Characteristics of Internet Background
Radiation. Proceedings of Internet Measurement Conference, Taormina, Sicily,
Italy.

 43

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr Neil Rowe
Naval Postgraduate School
Monterey, California

4. Mr. Daniel Warren
Naval Postgraduate School
Monterey, California

5. Han Chong, Goh
Naval Postgraduate School
Monterey, California

