_____ uarium:
Analysis of a Sophisticated
Multi-Stage Malware Family

Peering Into the Ag

Neel Mehta, Billy Leonard, Shane Huntley
Google Security Team

Version: 1.0
Published: September 5, 2014

TLP Green

Peering Into the Aquarium:
Analysis of a Sophisticated

Neel Mehta, Billy Leonard, Shane Huntley
Google Security Team

Version: 1.0
Published: September 5, 2014

TLP Green

Table of Contents

(182l o (Bt 1a] o FONRT— 2

Sofacy Analysis....cenniinas 3
Sofacy Internals..............6
Persistence Mechanism......15
Sofacy Functionality............16
Network Communication....17
Sofacy Indicates. .c.coommni 18

X-Agent Analysis.......covnen 19
X-Agent ldentifiers............. 20
X-Agentinternals............21

Persistence Mechanisms....26
Network Communications....26
Air-Gapped Operations....... 32

X-Agent Indicators............33
ABPERAINA ~wssmmmmsersmm g 0
Appendix B...............o 39

1 A
https:/Awww.us-cert.gov/tlp

Introduction

Many sophisticated state-sponsored attackers use multi-stage
malware toolkits. First-stage implants are widely distributed,
easily discovered, and serve as a simple beachhead. In
contrast, complex second-stage implants are typically used
sparingly on only the most interesting systems, after
determining there is limited risk of detection by security
products. As such, a first-stage tool exists primarily to limit
the exposure of second-stage tools, extending their usable
shelf life.

This analysis describes one family of malware: a first-stage
tool, Sofacy, and an associated second-stage tool, X-Agent.
Sofacy is an antivirus industry name, while X-Agent was
named by the malware authors. Together, these tools are
used by a sophisticated state-sponsored group targeting
primarily former Soviet republics, NATO members, and
other Western European countries. This information has
been determined from VirusTotal submissions.

Antivirus detection for both Sofacy and X-Agent is subpar,
with plenty of room for improvement. Antivirus detection
for Sofacy, based on VirusTotal data, was roughly 36.6%.
Detection for X-Agent was lower, at only 34.2%. Our goal in
releasing this analysis is to improve antivirus detection for
both. Consequently, recipients of this paper are free to share
it with interested parties in the security community.

This analysis is X IR N

Acknowledgements

This analysis was compiled with the tireless help and extensive expertise of the
Google Security Team, especially Heather Adkins, Daniel White, Joachim Metz,
Andrew Lyons, Liam Murphy, Elizabeth Schweinsberg, Matty Pellegrino, Kristinn
Gudjonsson, Cory Altheide, Armon Bakhshi, and Mike Wiacek.

VirusTotal Submissions By Country

Analysis of VirusTotal submissions for Sofacy and X-Agent yields insights into
the attacker's operations.

As a first-stage tool, Sofacy is used relatively indiscriminately against potential
targets. X-Agent is reserved for high-priority targets. This is borne out by the
data. VirusTotal submissions show that Sofacy was three times more common
than X-Agent in the wild, with over 600 distinct samples in the data set.

Proportional differences in the geographical distribution of submissions of the
first-stage tool, Sofacy, and the second stage tool, X-Agent, provide some
interesting insights.

For example, the Republic of Georgia represents only 3.5% of Sofacy
submissions, but makes up 28.9% of all X-Agent submissions, more than any
other country. This suggests that, at one point, Georgia was a high priority
target for the attackers.

This ratio is likely a lagging indicator of attacker interest (attackers must first be
caught, and compromise can go undetected for years).

The same comparison shows attacker interest in Ukraine, Germany, Poland,
Denmark, and also Russia.

X-Agent submissions from the United States and Canada were proportionally
smaller than Sofacy submissions.

Sofacy submissions to VirusTotal

Israel
2.7%

Ukraine
7.1%

USA
22.6%

Phillipines
3

"‘

Ceorgia
3.5%
Belgium
Austria 2.7%
3%
Others

Germany ' S
12.4%

X-Agent submissions to VirusTotal
Denmark)
1

Romania
1.9%

Russia

19.3% Georgia

28.9%

Germany
Poland 1 5 . 4%
3.8

Canada

Japan 3-8%

1.9%

Submission Share Ratio of X-Agent : Sofacy in VirusTotal by Country

Georgia
Romania
Russia
Denmark
Poland
Germany
Ukraine
Vietham
Canada
S. Korea

USA

Ratio

Sofacy Analysis

Sofacy is an above average first-stage implant. Early variants are distinctly more
technically complex than recent ones. For example, older samples feature the
ability to move seamlessly between processes and harvest credentials. Newer
variants are more mature and focused in their design. They provide
functionality to detect personal security products, survey infected machines,
and install a second stage tool, all without exposing techniques such as lateral
process movement.

Dropped By Boring-Looking Exploits

Sofacy is often delivered by Microsoft Word exploits as RTF, DOC or DOCX files
(e.g., CVE-2012-0158, CVE-2010-3333). It is occasionally delivered by Adobe
Acrobat PDF reader exploits. These exploits are often first used by Chinese
attackers, but have been repurposed by the actors responsible for Sofacy. To
achieve this, the Sofacy executable is swapped in for the original exploit's
payload, leaving other parts intact, including shellcode.

Sofacy Internals
Position-Independent C Code Development

The authors of Sofacy use clever compiler tricks to produce a binary with no
dependence on imports, relocations, or initial code position. This allows it to be
copied into another process and executed, without any additional dependencies
or setup requirements.

Assembly language development is slower and more expensive than
development in higher level languages. This ease of development comes at the
cost of new dependencies on OS-specific loaders, which complicate
cross-process injection. The authors of Sofacy have found an elegant middle
ground, which at first glance might appear to be hand written assembly, but is
consistent with the register allocation and pipelining of Microsoft Visual C++,

The entry point is passed two arguments: a pointer to an address in
kernel32.d11 and a base address to identify where the code is in memory.
Function calls and global variables are then accessed as an offset from this base
address.

Here are two examples:

Function Call:
segleo:@019DBF2 lea eax, [esi+193721h]
segl00:0019DBF8 call eax

Global Variabhle Access:
seg@@@:0019DBEG lea eax, [esi+194785h]
seg@@@:e019DBEC mov [ebp+var_A@_add_lnk_persistence], eax

Each function is passed the code base address as its first argument, and this is
used consistently, like a calling convention. Thusly, the authors have produced
a position-independent binary with no external imports, by utilizing
preprocessor macros, or a similar mechanism, to do pointer math for each
function call or global variable access.

In order to use system functions, the start function first walks back in memory
to find the start of the kernel32 module. Then the code manually walks the
export table, hashing the function names to resolve the requwed imports. A full
list of hashes for the imports is shown below.

s$eg@0e:8018B1B1 imported_function_hashes dd @FFD97FBh ; CloseHandle

seg@00:0818B1B5 dd 99EC8974h ; CopyFileW
segd00:0018B1B9 dd 9FCF597Bh ; CreateDirectoryW
seg@0e: 8018B1BD dd 30C4B297h ; CreateEventW
s5eglve: 8018B1C1 dd 7C0@17A5h ; CreateFileA
segdoe:0018B1C5 dd 56C6123Fh ; CreateFileMappingW
Segl0e:0018B1CY dd 7C@@17BBh ; CreateFileW
segP@0:0018B1CD dd 641192DBh ; CreateMailslotW
Segoee:ev18B1D1 dd 4EE4AQ5Bh ; CreateMutexW
segl@e:0018B1D5 dd 17@C8F8eh ; CreatePipe
segovo:0018B1D9 dd 16B3FE88h ; CreateProcessW
segP00:0018B1DD dd 72BDSCDDh ; CreateRemoteThread
seg@ov:0818BI1E] dd @CA2BD@6Bh ; CreateThread
segh00:0018B1ES dd @E454DFEDh ; CreateToolhelp32Snapshot
segPov:e018B1EY dd @C2FFB@3Bh ; DeleteFileW
5egl0e: 0a18B1ED dd 73E2D87Eh ; ExitProcess

s5egPee: 0a18B1F1 dd 6QE@CEEFh i ExitThread
5egkee:ve18B1F5S dd 23545978h ; FindClose

sego@o: 0018B1F9 dd 63D6CR65h ; FindFirstFileA
segl@@:0018B1FD dd 63D6C@7Bh ; FindFirstFilew
segdoe: 00188201 dd @ASE1ACY97h ; FindNextFileA
segd00: 08188205 dd BASE1ACADh ; FindNextFileW
sSegleo: 0188209 dd 4DCID5AGh ; FreeLibrary
seglv0:ee18B2eD dd 36EF7386h ; GetCommandLineW
SegPev: 0188211 dd 7B8F17E6h ; GetCurrentProcess
segd0:0018B215 dd QE6@DFA@2h ; GetCurrentProcessId
5ego0:0018B219 dd @E8CDCFE4h ; GetCurrentThread
seg0oe:0@18B21D dd 35BBF9SEh ; GetCurrentThreadId
Seglkee: 00188221 dd @F2E1A979h ; GetEnvironmentVariableW
Segoee: 90188225 dd @AC30AB74h ; GetExitCodeProcess
Segoee: 00188229 dd 1B3F95F9h ; GetExitCodeThread
segeee:0e18B22D dd @C@132B93h ; GetFileInformationByHandle
Segleo: 08188231 dd @DF7D9BADh ; GetFileSize
segleo:0018B235 dd @E1159BADh ; GetFileTime
segl@0:0018B239 dd @B98C88CFh ; GetlLocalTime
seg00:0018B23D dd 45B@6D8Ch ; GetModuleFileNameW

segd00: 00188241 dd 8F2A152Dh ; GetPrivateProfileStringA
Segooe:e018B245 dd 8F2A1543h ; GetPrivateProfileStringW
5eg000: 00188249 dd 7C@DFCAAh ; GetProcAddress
segldlv:ed18B24D dd 867AE3EDh ; GetStartupInfoW
5egee: 00188251 dd @B8E579D7h ; GetSystemDirectoryW
seglfe: 00188255 dd 89D7610Dh ; GetSystemTimeAsFileTime
s5egoRe: 00188259 dd @F791FB23h ; GetTickCount
segP@:0818B25D dd 51268313h ; GetTimeZoneInformation
Segeee: 00188261 dd @C75FC499h ; GetVersionExW
5eg000:0018B265 dd 8AB241B6h ; GetVolumeInformationW
Segleo:0018B269 dd @C@397ECh ; GlobalAlloc

seg@oe: 8018B26D dd 7CB922F6h ; GlobalFree

s$eg000: 80188271 dd @B46984E7h ; HeapCreate
5eg000:0018B275 dd @CD92833Eh ; HeapDestroy

seg@00: 00188279 dd 6E824142h ; IsBadReadPtr
seg@00:0018B27D dd PECOE4EA4h ; LoadLibraryW

seg00e: 00188281 dd @CB73463Bh ; lstrcatA

seg00e: 00188285 dd @CB734651h ; lstrcatW

Segdve: 00188289 dd @CB53493Bh ; lstrempA
seg00:0018B28D dd 4B1E5ADBh ; lstrcmpiA

Segoee: 00188291 dd 4B1E5SAF1h ; lstrempiW

seg00: 00188295 dd @CBIB4SFBh i 1strepyA

segP0o: 00188299 dd @CB9B4A11h ; lstrepyW
segle:0018B29D dd @DD43473Bh ; lstrlenA

Seged: 8e18B2A1 dd @DD434751h ; lstrlenW
Segl0o:0a18B2A5 dd 7B@73C5%h ; MapViewOfFile
segloo:0018B2A9 dd @EF4AC4E4h ; MultiByteToWideChar
s5egf00: 0018B2AD dd @DD81EESEh ; OpenMutexW

seg00e: 00188281 dd @EFE297Ceh ; OpenProcess

seg00e: 0018B2B5 dd @B4@7C411h ; PeekNamedPipe

s5egooe: 0018B2B9 dd @D53992A4h ; Process32FirstW
segeee: 001882BD dd 2A523C@Ah ; Process32NextW
segoee:vv18B2C1 dd 1@FA6516h ; ReadFile

Segeoe: 0e18B2C5 dd 579D1BE9h ; ReadProcessMemory
Segoee:0e18B2C9 dd 14AQ59E5h ; ReleaseMutex
Segev9:ee18B2CD dd SE4A3F88h ; ResumeThread
Seg@00:0a18B2D1 dd @BFC7@365h ; SetCurrentDirectoryW
segl00:0018B2D5 dd 96A@28A6h ; SetEndOfFile

Segovo: 00188209 dd 56F73986h ; SetFileAttributesw
segfe: 0018B2DD dd 76DA@8ACh ; SetFilePointer

seg00@: 0018B2E1 dd @E1159BB@h ; SetFileTime

segdee: 0018B2ES dd QD8AAF394h ; SetThreadPriority
5egP0e: 0e18B2E9 dd 4DF1B5FFh ; SetThreadPriorityBoost
segleo: 0018B2ED dd @DB2D49B06h ; Sleep

5eglea: 0e18B2F1 dd 78B5B983h ; TerminateProcess
5eg@e0:ee@18B2F5 dd eBD@16F83h ; TerminateThread
Segood: a18B2F9 dd @B2089259h ; UnmapViewOfFile
s5eg000:0018B2FD dd 91AFCA54h ; VirtualAlloc

segov: 00188301 dd 6E1A959Ch ; VirtualAllocEx

5eg00e0: 00188305 dd 30633ACh ; VirtualFree

segoRe: 0188309 dd @C3B4EB78h ; VirtualFreeEx
segloe:0018B30D dd @CE@5DIADK ; WaitForSingleObject
SegP0:0018B311 dd @C1634AFSh ; WideCharToMultiByte
seghe:0e18B315 dd @E8QA791Fh ; WriteFile

Seglve: 08188319 dd 4B63@76Ch ; WritePrivateProfileStringA

seg0P0:0818B31D dd @D83D6AATh ; WriteProcessMemory

Loader Functionality

Sofacy persists on infected machines as an encrypted and compressed payload,
appended to a small loader executable file. The loader decrypts the payload by
permuting a 32-bit key and XORing each byte with the lowest eight bits. The last
byte of the payload is left untouched.

The 32-bit key is initialized with a literal value in the loader'smain () function:

.text:00401025 mov [ebp+var_28], 1FCD395h

This value is then modified, often using MMX instructions:

.text:0040107F movd mm@, [ebp+var_28]
.text:00401083 pslld mm@, 2
.text:00401087 movd [ebp+var_287, mm@
.text:0040113D mov eax, [ebp+var_28]
.text:00401140 shl eax, 4
.text:00401143 inc eax

.text: 00401144 mov [ebp+var_28], eax

Finally, the key is passed to the decryption function:

.text:0040117A push [ebpt+var_28]
.text:0040117D push 7D68h
.text:00401182 push [ebpt+var_8_huffer]
.text:00401185 call loader_decrypt_data

Here is the equivalent decryption code in C:

void loader_decrypt_payload(

unsigned char* payload, size_t len, unsigned int key,
unsigned char* out) {

for (size_t i = @; i < (len - 1); i++) {
unsigned char x = (key >> ((i * 1) & 7)) & oxff;
out[i] = payload[i] * x;
key *= @xeabl;
key *= 0x24142871;

}

// last byte is not obfuscated.

out[i] = payload[il];

LZSS Decompression

The decrypted payload contains a decompression stub, which implements a
simple Lempel-Ziv variant (LZSS)* commonly used in malware. Malware
analysts will likely recognize the decompression code, with one small change. In
addition to the first decryption layer, each compressed input byte is XORed with
a permutation of a hardcoded 32-bit key:

unsigned int key = @xE4F1A71C;

unsigned char next_byte = input_byte * (key & 0xff);
// Equivalent of x86 ‘ror’ instruction

key = rotate_right(key, 1);

Dynamic Dependency Resolution

The loader invokes the entry point of the position-independent code blob. It
must then first resolve dynamic dependencies, before doing anything else.

Sofacy identifies dynamic dependencies by iterating through a list of files in
twindir%\system32\, hashing file names, and comparing those hashes to a
list of hashes for needed DLLs. Ultimately, it depends on at least the following
system DLLs:

kernel32.dll
ntdll.dll

user3?.dll

ws2 32.d11

shlwapi.dll
advapi32.dll
iphlpapi.dll
pstorec.dll
inetmibl.dll
snmpapi.dll
wininet.dll
setupapi.dll
shell32.dll
ole32.dll

10

String Encryption

Contemporary variants of Sofacy encrypt strings using an algorithm that
resembles RC5. The loader contains three distinct blobs of encrypted data:

1. Dynamic dependencies, configuration, and C2 servers.

2. Alist of antivirus and personal security products to detect.

3. The actual implant binary.
Each variation of RC5 permutes an 8-byte block of data with an 8-byte key,
using a single round. A 4-byte window of the key is used to decrypt each byte of
input data. For example, taking the following key bytes:

AR BB CC DD EE FF GG HH
The first byte of input will be decrypted using the first 4 bytes of the key:

AA BB CC DD EE FF GG HH
The second byte will be decrypted using bytes 2 through 5:

AA BB CC DD EE FF GG HH

And, eventually, the window wraps at the 6th byte of input, using the last 3 and
first byte of the key:

Aa BB CC DD EE FF GG HH

The four key bytes, along with an 8-bit representation of the input position, is
combined to generate an 8-bit value that is XORed with the input byte,

Each algorithm is a variation on this theme:

unsigned char *input;
size_t input_length;
unsigned char xkey;

for (size_t i = @; i < input_length; i++) {
unsigned int x, y;
unsigned char a, b, c, d;
unsigned char input_index_char = i & @xff;
size_t block_index = i & 7;

key[i & 77;

key[(i + 1) & 7];
= key[(i + 2) & 7];
key[(i + 3) & 71;

Q 0 T o
|

"

[permute values - get an 8-bit value to xor with input byte]

inputlid 4= ¥;
i

There are at least 6 variations of the permutation algorithm. For most Sofacy
samples, one of these six variations can be used to decrypt the three encrypted
blobs of data.

Variation 1:

+= input_index_char;
o 4;
A= b.

X X X X

= input_index_char;
A d;
y & ¢;

< <

X E= s
x &= Oxff;

Variation 2;

x = input_index_char;
x *= d;
X &= ¢;

*= input_index_char;
<<= block_index;
+= b;

b <

A

>

Yi
x &= Oxff;

Variation 3:

y = input_index_char;
y &= @xff;

¥ &= dy

¥ &= ¢}
*= input_index_char;
>>= 7,

A= by

x X xX X

X += y;

12

x &= oxff;
Variation 4:
¥ = i)
y += input_index_char;
y >>= block_index;
X = d;
X *= input_index_char;
X &= Oxff;
X |= ¢
X *= by
X "=y
Variation 5:
X = a;
X += input_index_char;
X <<= 4;
x &= Oxff;
x %= by
y = input_index_char;
y &= @xff;
y "= d;
y &= C;
X w= g
x &= Oxff;
Variation 6:
X = a;
x *= input_index_char;
x <<= block_index;
x &= Oxff;
% = g
y =4d;
y *= input_index_char;
y &= @xff;
y &= c;
X "=y
X &= Oxff;

Parameter Store

Recent Sofacy droppers encrypt configuration data and store it in a registry key.
This key hangs off HKLM if the dropper has permissions to write there,
otherwise HKCU, and is located at:

\Software\Microsoft\MediaPlayer\{E6696105-E63E-4EF1-939E-15DDD83RB6694) \chnnl

The configuration data is stored in a proprietary key/value format. It starts with
a 6-byte key, followed by 20 bytes of UINT8 lengths. The remainder of the data
is encrypted configuration values. Configuration values are identified by their
index into the length table.

The parameter store allows run-time updates to the configuration, and serves to
separate it from the implant binary. For example, the C2 servers cannot be
found in the implant binary, and may only be recovered statically from a
dropper, or by decrypting the data from the parameter store.

Keystroke Logging

Sofacy’s keystroke logger attaches its input processing methods to those of the
active foreground window. It polls the foreground window, detecting changes as
the user switches applications.

It also captures process context, such as executable paths and arguments.
Captured keystrokes are normalized to Unicode, taking into account the active
keyboard layout.

Inter-Instance Communication Via Mailslots
Sofacy communicates with itself over a mailslot® such as:

M \Mailslot\LSAMailslot
As an example, the keystroke logger uses this mailslot to communicate with the
main Sofacy process. As it receives keystrokes, it sends them back over the
mailslot as serialized HTML. Another instance of the implant, running in a

different process, will read the keystroke log data from the mailslot, encrypt it
and re-transmit it over the C2 network connection.

14

Persistence Mechanisms

Persistence Via LNK Shortcuts

Sofacy may persist via changes to an existing LNK file* in a shell startup folder.
This LNK file is invoked each time the user logs in. Sofacy adds a “Shell Item” to
the end of the .LNK file

The shell startup folder locations are determined by reading the following
registry keys:

HECU\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Startup
HKCU\Software\Microsoft\Windews\CurrentVersion\Explorer\Shell Folders\Desktop
HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Common Startup
HEKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\Shell Folders\Commcn Desktop

Sofacy scans the startup folders for an appropriate, pre-existing LNK file, The
LNK file's original timestamps are captured and a small change to the file is
made. After modification, the Windows APl SetFileTime ()" function is called
to restore the file’s “creation”, “last access”, and “last write” times. An example
LNK file is included in Appendix A.

Persistence Via Windows Shell

Sofacy is also known to persist via Quick Launch® folders, Shell Icon Overlay
Handlers and Shell Service Objects.

Older versions of Sofacy may drop itself into one of the following Quick Launch
folders:

*ALLUSERSPROFILE® \Application Data\Microsoft\Internet Explorer\Quick Launch
$USERPROFILE%\Application Data\Microsoft\Internet Explorer\Quick Launch

Shell Icon Overlay Handlers’” are COM objects that implement the
IShellIconOverlayIdentifier interface to show icon overlays (where
one icon is displayed on top of another). Icon Overlay handlers are loaded in the
context of explorer.exe when each user logs in. This is used by legitimate
applications such as TortoiseSVN.

Sofacy registers itself as a Shell Icon Overlay Handler by setting the appropriate
registry key to the UID of its registered COM object:

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellIconOverlayIdentifiers

4 http://msdn microsoft. com/en-us/library/dd871305 aspx
5 B : f s/l g 724933(y=
[h!IDf’.tEEhDEI microsoft.com/en-us/ 'hEaE;!'_'EEGSJZI 2(v=ws.10) aspx

15

Observed names for the Icon Overlay Value are: AdvancedStorageShell
The icon overlay handler key points to a registered COM object, a Sofacy DLL:
{2D876AE9-4412-7513-29A6-9436AE031980}

Sofacy can also persist as a Shell Service Object, another class of COM objects
that load on user login. They are registered in the following key:

HKLM\Software\Microsoft\Windows\CurrentVersion\Explorer\ShellServiceObjectDelayLoad

Observed names for Sofacy Shell Service Objects are: netids
The shell service object CLSID used is:

{OB115951-84FD-43E7-A2DB-F3C4D36F4BEA}

Sofacy Functionality

Disabling Error Reporting

To avoid detection, Sofacy systematically disables crash reporting, logging and
post-mortem debugging each time it starts. It is delivered via memory
corruption exploits, which are inherently unpredictable. Also, Sofacy performs
complicated inter-process inspection and code injection. Finally, the code may
have bugs. Any of these factors may lead to crashes, which if logged are likely to
be noticed.

Sofacy disables crash and PC health reporting by changing the following registry
DWORD values to 0:

HKLM\System\CurrentControlSet\Control\CrashControl\LogEvent
HKLM\System\CurrentControlSet\Control\CrashControl\Send&lert
HKLM\System\CurrentControlSet\Control\CrashControl\CrashDumpEnabled
HKLM\Software\Microsoft\PCHealth\ErrorReporting\DoReport
HKLM\Software\Microsoft\PCHealth\ErrorReporting\ShowUI

It suppresses system hard error message display by setting the following
registry DWORD value to 2:

HEKLM\System\CurrentControlSet\Control\Windows\ErrorMode

It also disables Dr. Watson (or other post-mortem debuggers) by deleting the
following registry key:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\AeDebug

Interest in the Physical Location of the Machine

Sofacy tries to read a value Physicallocation Name from the system
administrative template file: \Windows\inf\system.adm

Administrators, especially in large organizations, will populate this field with the
physical location of the system in the field.

Sofacy gathers this information as part of its machine survey. It is sent back to
the malware operator, adding context that may inform operator interest.

Email Credential Harvesting

Sofacy recovers cached email credentials from several sources. Specifically, it
can recover saved credentials from Outlook, The Bat, Eudora, and Becky.

Local Output Queue

Sofacy temporarily queues data it gathers on disk. This data is LZSS-compressed
and encrypted. The location of the queue file is configurable and specified in a
registry key. The registry key is subject to frequent change, as is the location of
the queue file. In one sample, the queue file location was stored in this key:

HKEY USERS\$SID%\Software\Microsoft\MediaPlayer\Tuner\MediaLi
cense

Network Communications

Impersonating Legitimate Processes For Network Communication

When communicating with the C2 server, Sofacy will scan a list of running
processes, looking for a running web browser or email client. When one is
found, it will clone the process arguments exactly, then create a new instance of
the process. The main thread of the cloned process is started in a suspended
state, and the implant is injected into the new process address space. The
implant is started instead of the original entrypoint. Sofacy will pick a C2 that
matches the cloned process: HTTP, SMTP, or POP3.

By doing this, Sofacy mimics legitimate user processes, making it difficult to
discern that network traffic originated from malware, not user actions.

Asymmetric Encryption of Session Keys

Sofacy uses the Windows cryptographic APl to create session keys for C2
communications. It creates an ephemeral RC4 session key and seals it with a
hardcoded 1024-bit RSA public key. This sealed session key is included with the
data transmitted to the C2 server. As such, only a recipient with the matching
private key can decode traffic.

Proxy Awareness

Sofacy will detect proxies configured for Winlnet and Firefox. It will then use the
correct proxies when connecting outbound to C2 servers.

Sofacy Indicators

Known mailslots (for IPC):

\\.\Mailslot\LSAMailSlot

Representative Sample Hashes

360fcb7chb295c0a79934f789%edB804424e0cb6cde316d7£3478f2f8¢c4386f5b68
579%a5¢c130752a5b696d698d0dbe91fa23cabd52596b66d076a30b21e8008b17
2e25b8060b6ffeas52e7055da33514d1d5bec378d19d37£d1530fdefcdb044115b
02527cd241d8b5256c34b21£fa5672018a138421bc575ceab8783a018£6404ac0

Example Signatures

The following ClamAV and Yara signatures can be used to
detect Sofacy:

SOFACY LOADER:0:*:558becB83ec*535657*8365£800c745*00006a40680030000068*00006a
00££15*40008945f8837d£f8007505%e923010000*400085c07505*e20a010000*1040008545+
837d*££7505*e9e1000000*6a026a008b45*£7dB50Ff£75*££15+1040006a008d45*5068*0000
fE75f8££75*££15*10400085¢07505*9ae000000*f£75*££15*1040008b45*c1eD04408945%
Bb45f88945*8365fc008365*006a40680030000068+*19006a00ff15*%40008945*837d*007502
*eb6e*8b45*8945£fcff75*0000£f£75£8eB5d0000008365*00eb07*817d*310100007316*8b45
£c0531b11800508b45£8053101000050££55*8b45*19008945f4Fff35%4000f£f75fcFE55f4+*5f
5e5bc%c3*8b45108bcaB3f10183e107d3e830043a8b451069c061eal0003571281424423bdé8
9451072da*8bc75f£5e5dc20c00

rule SOFACY ConfigEncryptionArgs {

18

strings:
$6_c_encrypt_config_stringl = { 4C BB 4F 08 45 8D 04 ?7? 41 8B D5 4%
4% 1A ES }

$s_c_encrypt_config string2 = { 4C 8B 4F 08 8B 94 24 [4] 49 8D 49 1A
g8 C5 EB }
$s_c_set_config by num 8 % = { 4C 8D 0D 86 78 00 00 48 8D 15 [4] 48

4C 24 2?7 41 BB 08B 0G0 0G0 GO 89 44 24 2?27 E§ [0-16] 48 8D 4C 24 27 41 BE 0§
00 00 89 44 24 7?7 E8)
condition:
1 of them
}

rule SOFACY Loader |
strings:
$ = { C7 4% 77 95 D3 FC 01 }

$ = { C7 45 7? EL 97 AF 54 }

$ = { C7 45 [5] OF 6E 45 2?7 OF 72 FO 02 i

$ { 6A 40 &8 00 30 00 00 €8 D4 FD 1% 00 &a 00 FF 15 }
$ [6a 4C 68 00 30 00 00 68 A8 FE 19 00 &2 00 FF 15 }
$ = { 6a 40 68 00 30 00 00 68 6D FD 1% 00 6A 00 FF 15 }
$ = { 64 40 68 00 30 C0 00 68 ¥O C9 1A 00 6A 0C FF 15 }
$ = { &R 40 68 00 30 00 GO &8 D& FE 19 00 6& 00 FF 15 }

$ = { 55 BB EC 8B 45 0C 56 33 D2 57 8B 7D 08 8D 70 FF 85 F6 76 26 8B
10 8B CA 83 F1 ¢1 83 E1 07 D3 ES 30 04 3& 8B 45 10 €% CO 61 BA 00 00 35
28 14 24 42 3B D& 89 45 10 72 DA BE £7 5F S5F 5D £Z2 OC 00 }

$ = { BB 45 77 (05 31 Bl 18 00 50 BB 45 F8 05 31 01 00 00 30 FF 55 2?2
45 %7 03 22 (DB | DCy 19 00 §9 45 772 FF 35)

$ = (BB 45 27°05 31 Bl 18 00 50 68 39 11 40 00 FF 35 77 8B 45 72 05
E7 1% 00 8% 43 ?? FF 35 |

condition:
1 ¢f them

Known C2 Servers

C2 domains:

securitypractic.com
checkmalware.org
adawareblock. com
checkmalware.info
scanmalware.info
updatepc.org
updatesoftware2d.com
testservice2d . net
symanttec.org
microsofi.org
microsof~update.com

IP Addresses:

123.100.228.59
200.74,244.118
74.52.115.178
88.198.55.14¢6
€7.18.172.18
203.117.68.58

8D
44

8D
00

45
71

8B

X-Agent Analysis

X-Agent is a second-stage toolkit complementing Sofacy. Portions of the
X-Agent code base can be found in malware dating back to at least 2004.
Somewhere down the Line, X -Agent became the internal name for this tool. The
features of X-Agent demonstrate its sophistication. For example, it can operate
in an air-gapped environment via an ad-hoc pseudo-network of USB flash
drives.

X-Agent is multi-platform capable. With minor changes to platform-specific
code, X-Agent will run on Linux instead of Windows. It can also be repackaged in
different forms, for example as a DLL, by the addition of a single module. This
analysis applies to X-Agent on two known platforms: Linux and Windows.

X-Agent Identifiers

Windows PE File Resource Locale IDs

Windows Portable Executable (PE)® resources are localized and include the
locale ID® of Windows running on build systems. As such, it may reveal the
origin of malware. The locale ID field can be faked, but is often overlooked in
malware build environments.

PE resources are organized into a 4-level deep tree, with the third level
specifying the locale ID of the resource. This is distinctly different from a code
page, such as Windows-1251, and is more specific.

The Windows resource compiler (ReD11.d11) uses the default locale ID
0x0409 (en-US).

Of 113 X-Agent PE samples observed in VT's dataset, 68 had PE resources.
Three unique locale IDs were found in these samples:

0409 - en-US (English US)
0419 - ru-RU (Russian)
0000 - NULL (invalid)

Of the 68 samples that contained PE resources, the most common locale ID was
ru-RU (Russian).

8 http://msdn.microsoft.com/en-us/gg463119.aspx
* http://msdn.microsoft.com/en-us/goglobal/bb964664.aspx

20

Locale IDs | Number of Samples

 ews | w0

en-US and ru-liriﬂ 4 .
E ru-RU and NULL '~"-_~~-~-——:— B 7”W47
I NULL only j - 1 B

Program Database File Paths
Microsoft's Visual C++ compiler may include a fully-qualified path to a program
database (PDB) file to help a-debugger can locate symbols. This build-time
artifact can provide information about the systems used to build the malware.
The following PDB paths have been observed in X-Agent samples:
C:\Documents and Settings\AgoMuumcrpaTop\Mou NOKyMeHTE\

Visual Studio 2005\Projects\NET\Mail 1.1\

Mail 1.I1\obj\Release\rundll32.pdb
C:\WORK\SCOFT\Joiner\joiner v 0.l1\Release\joiner.pdb

C:\WORK\SOFT\Joiner\jciner v 0.2\Release\joiner.pdb

d:\Shared Data\Data\FINAL DATA\spec ver\
azzy_dll_sslmail 2008\Releaselazzy dll sslmail 2008.pdb

X-Agent Internals

X-Agent Framework

The X-Agent framework is a set of components, communicating over
well-defined methods. Each component is a module, and they communicate
over channels.

Individual instances of X-Agent are termed agents. Each agent is assigned a

unique ID (agent ID), calculated from a hash of the MAC addresses of all network
interfaces on the machine.

21

The X-Agent framework uses the term controller to refer to the software running
on the C2 server. Each X-Agent ggent communicates with its controlfer over a C2
channel.

Kernel

The core module in the X-Agent framework is the agent kernel, a small
user-mode microkernel. This microkernel can register other modules and
communication channels, as well as handle IPC, thread management,
synchronization and cryptography. It has a generic interface to storage and
configuration data.

Implant Initialization and Lifetime

On startup, X-Agent's main () function registers relevant modules and an
external channel. It then starts a channel controller thread, which handles
message distribution and channel selection. Finally, X-Agent starts a worker
thread for each module. X-Agent continues to run until all these workers
terminate, or until operator commands instruct it to exit or uninstall.

Parameter Storage

X-Agent, like Sofacy, can maintain a parameter store that contains C2 servers
and other configurable parameters. This would be initialized by the dropper,
separating the configuration from the implant configuration on disk. It also
allows for runtime configuration changes. For unknown reasons, most X-Agent
builds do not use the parameter store in practice.

Windows The Windows Registry provides the underlying datastore for the
parameter store on Windows and can be found at:

HEKEY USERS\S-1-5-19 Classes\Software\Microsoft\MediaPlayer\{E
6696105~-E63E-4EF1-939E-15DDDE3RGESA)

Individual parameters are keyed off their registry value name, a hexadecimal
number string.

Linux On Linux, the parameter storage is held in a SQLite database, located in

/tmp/My BD. Each row in the database contains an id column which serves as
the key. Each parameter is then stored as a binary or dword value,

" Channels

X-Agent uses channels to structure communication and connections. Channels
are used for IPC and C2. Multiple channels are multiplexed over a single

22

network connection. External channels are used to communicate with the
controller, abstracting the network C2 protocol from higher-level channels.

The following channel types have been found in X-Agent samples:

HTTP Channel 0x2101, O0x2102
Mail Channel 0x2302
Local Channel 0x2301

Channel Controller

The X-Agent channel controller is responsible for passing module messages
between external channels and local modules. The channel controller is unaware
of any specific C2 protocols. These are abstracted and entirely the responsibility
of the external channel.

The channel controller also passes controller-generated (inbound) module
messages to local modules. It queues these messages in memory as a C++
vector, and asynchronously passes thern to the target module.

The channel controfler’s final responsibility is to control which channels are used
for communication, through a channel changing mechanism exposed via a
module command. An operator sitting at a remote console can switch from one
external channel, switching C2 protocols on the fly. For example, X-Agent might
switch from communicating over HTTP to email protocols.

External Channels

External channels are used to muitiplex messages from modules to the
controller. X-Agent ggents must register at least one external channel with the
kernel. They imitate legitimate network activity, such as web browsing, or
sending and receiving email.

Local Channels
X-Agent contains a local channel implementation that uses a hidden file for

module message 1/0. This local channef is used in conjunction with the Net Flash
module in air-gapped environments (see below).

23

The X-Agent kernel will selectively intercept messages to load and unload
modules before they passed to the channel controller. This is conceptually
similar to a local channel.

Modules

Each X-Agent component is a module, including the kernel. The modules
register with the kernel, and are identified by a unique 16-bit iD.

The following modules have been observed in X-Agent binaries:

Kernel 0x0002
Remote Key Logger 0x10G2
Process Retranslater 0x1302
DLL 0x 1602
Net Flash Ox 1201

Module classes are derived from a common base class, and accessed over the
same basic abstract interface. X-Agent modules may override five methods in
the module base class. In a compiled X-Agent binary, they appear in the
following order in a module vtabie:

1. A take message method. This method passes inbound module
messages to the modules, which take ownership of them.

2. A give message method, by which the module gives up ownership of
outbound module messages, to send them to the controller,

3. Aget module D method, that returns the 16-bit module ID.
4. Aset module ID method, that sets the module I1D.

5. A worker run method, which is the main ¢) function for the module.
It invoked in a dedicated thread, started by the kernel.

24

Module Messages

Module messages are X-Agent's internal message representation. A module
message contains the aggent ID, a module ID, a command number, a priority, and
an opaque data field and size.

The module ID on outbound messages specifies the module that created the
message.

On inbound messages, the module ID specifies which module should receive the
message. These messages are called gquestions, and come from the controller.
The destination module will receive these guestions, and may choose to answer
them with a response. Responses are also constructed as module messages.

Some modules will generate messages autonomously. For example, the
keystroke logger module will generate module messages containing logged
keystrokes.

Module Message Serialization

X-Agent serializes module messages starting with a simple header, followed by
an opaque field:

struct module_message {
UINT16LE module_id;
UINT8 command_number;
UINT8 module_message[module_message_size];

i

X-Agent serializes each module message by wrapping it in a raw packet (see
Appendix B). That raw packet is then sent over the network to the C2 controller.
The size of the C2 message specifies the raw packet size, and subsequently the
module message size,

The protocol design does not include sequence numbers and behaves like an
unreliable transport mechanism. Statefulness is tracked completely in response
module messages. For example, when X-Agent receives a command to read a
file, it responds with a log message that says it read a specific file, followed by
the file's contents.

HTML Log Messages

X-Agent log messages are written as HTML and color coded, perhaps to make it
easier for human operators to read. Error messages tend to be colored red:

process is exist
File don't create

25

Persistence

On Windows, X-Agent will persist via a Registry Run key, using rund1132.exe
to invoke its publicly exported init () method. The Run key may be named
after its DLL filename on disk, such as:

HKCU\software\microsofti\windows\currentversion\run\splm.dll
With a registry key value of:
rundll32.exe "C:\ProgramData\splm.dll", init

Alternatively, X-Agent may persist as a Windows service, or as a Shell Icon
Overlay Handler, like Sofacy.

Linux deployments of X-Agent may persist via a .desktop file located in
~/.config/autostart/. When installed as root, the X-Agent binary may be
installed as /bin/rsyncd and persist via run level scripts such as rc. local.

Network Communications

Packet Queues

X-Agent uses packet queues to buffer C2 traffic when passed between the kernel
and channel controller. The inbound message queue is a C++ vector in
memory, accessed asynchronously.

Outbound messages are buffered in two local queue files on disk, one each for
high and normal priority messages. Each queue holds encrypted module
messages, prefixed by a UINT32LE lengths.

Observed names for the queue files are:

.edg6EB85F986
.edgb6EF885E2
edg6EB85F98675. tmp
zdg6EB5F98675. tmp
edg6EF885E2. tmp
zdg6EF885E2. tmp

These queue files are most often located in the /tmp directory on Linux and the
path returned by GetTempPath () on Windows. Some DLL builds of X-Agent
will put these queue files in their working directory instead, although this is less
common.

26

After reading queue files, the channel controller deletes them. They are not
securely wiped from disk, and may be recoverable.

External Channels and Encryption

X-Agent HTTP traffic is clear-text. SMTP and POP3 channels use TLS, and are
mare challenging to detect on the network.

HTTP External Channel

X-Agent's HTTP external channel is commonly-used to talk to the controller,
PCST requests are used to send messages while GET requests retrieve inbound
messages.

An example HTTP external channel session has been provided as a text file and
is available via VirusTotal with a SHA-256 hash of:

5800cf661dé0c54eeabBBehiT6elbd87ab700d78804352d01e30248c24a7al6e

All HTTP messages include a magic token value in the URL. POST messages also
include a request body containing an encoded module message.

HTTP URI Generation

The full URI for HTTP requests is randomly generated, according to a template
implicitly agreed upon by both agent and controller.

The base URIs for GET and POST requests is generated by selecting a random
string from a list. Since this base URI is ignored by the controller it is not
unusual for it to change between X-Agent versions. In one X-Agent sample the
following list of base URIs was observed:

/watch/?
/search/?
fEind/ 7
/results/?
/open/?
/search/?
/close/?

27

Parameters for the URI are chosen from a list and appended to the base URI.
The following parameter name choices have been observed:

Cext=
from=
ai=

ags=

oe=
btnG=
oprnd=
ai=

utm=
channel=

One of these parameters is agreed upon (by the agent and the controller) to
encode the ggent 1D, and is henceforth referred to as the HTTP agent ID token.
This is used by the controller to track sessions. In the representative sample, the
chosen parameter was ai=. All other URI parameters appear to contain
meaningless, randomly-generated base64-like data.

Older X-Agent samples used a static URI for HTTP channel requests. This ends
with a hardcoded session tracking parameter value name ai=. The HTTP agent
1D token was simply appended to this base URI:

/webhp?rel=psy&hl=T&ai=

HTTP Agent ID Token Format and Encoding

The controller will extract the HTTP agent /D token from the correct URI
parameter. Itis then decoded to identify which agent is communicating.

The HTTP agent ID token is base64 encoded data, using the web-safe aiphabet
(see Appendix B). The encoded string is padded with a 5-byte random prefix so
that it iooks like valid base64 data.

When encoded as binary data, the HTTP agent ID token starts with a 4-byte XOR
key, followed by a 7 or 20-byte magic token value, and the UINT32LE agent /D:

[UINTE xor key([4]] [UINT8 magic_token(7 or 20]] [UINT3ZLE agent_id]

The XOR key is repeated and extended out to a length of 11 or 24 bytes, then
XORed with the magic token and agent 1D fields,

The 7-byte magic token for HTTP data, when XOR decoded, should be:

76 0e 25 £9 eb 31 24

28

Older versions of X-Agent use a 20-byte ASCll magic token value;
VAMGN®ZW1lvenmhjOGIyZQ
The following steps may be used to decode an HTTP agent iD token:
1. Discard the 5 bytes of prefix data.
2. Baseb4 decode using the web-safe alphabet (see Appendix B).
3. De-obfuscate, XORing with the repeated XOR key.
The following example demonstrates the decoding operation.
Client (agent) request:
GET
/close/?Lext=01YYE&from=ywvKmkkUJyviai=oedQI3vMSQ639N70lwiYALuBC&fro
m=72RCC&SQQAP=Xibyi HTTP/1.1
Accept:
text/html, application/xhtml+xml, application/xmi;g=0.9,*/*;q=0.8
Accept-Language: en-us,en;g=0.5
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/5.0 Gecko/20100101 Firefox/20.0
Host: windows-updater.com
Server (controller) response:
HTTP/1.1 200 OK
Date: Thu, 12 Jun 2014 22:18:27 GMT
Server: Apache
Content-Length: 3
Connection: close
Content-Type: text/plain; charset=UTF~8§
400
In this example, the HTTP agent ID token is in the ai= URI parameter:
al=cedQJI3vM3Q06]9NT7olw])YALUSBC
To decode, discard the 5 bytes of prefix data, leaving:
3vMSQoe i 9NTolw) YALUBC

This data must be base64 decoded using the web-safe aiphabet (see Appendix
B). The resultis:

de £2 12 43 a8 fd 37 ba 35 c¢2 36 00 2e ef 02
29

The first 4 bytes of this data are the XOR key. To continue decoding, XOR with
the repeated key, giving a result of:

76 Ce 25 £9 eb 31 24 43 f0 1c¢ 10
The first 7 bytes are the expected HTTP ggent ID token:
76 0e 25 £9 eb 31 24
The remaining 4 bytes are the agent ID, as a 32-bit little-endian integer:
43 £0 1c 10
The agent ID in this case was 0x101cf043.
In some situations, the high 8-bits of the agent /D may be zero, causing only 3
bytes of the 32-bit agent ID to be base64 encoded. The decoded output for HT7P

agent ID token tokens will look truncated, missing the last byte. This is likely
unintended.

HTTP Message Format and Encoding

HTTP channel messages are encoded in a format common to both inbound and
outbound messages. Inbound messages are responses to GET requests, and
outbound messages are contained in POST request bodies.

The encoding of HTTP channel messages is simitar to that of HTTP agent ID
tokens. To decode, a 5-byte junk prefix should be discarded, and the remaining
data base64 decoded with the web-safe alphabet (see Appendix B).

The result will be binary data, starting with an 11-byte header, containing the
following fields:

[UINTE xor key[4]] [UINTB magic_token[7]]
The following steps will decode a HTTP channel message:
1. Discard the 5-byte prefix from the body.
2. Decode the remainder with the web-safe base64 alphabet.
3. Retrieve the 4-byte XOR key (the first 4 bytes of decoded data).

4. Decrypt the next 11 bytes of the message with the XOR key. This
includes the HTTP magic token and the ggent 1D.

5. Validate the 7-byte magic token in the header has the expected value:

30

d8 5a 8c 54 fb eb5 e6
Discard the magic token bytes.

The result of this decoding is a raw packet message, encoded in the
previously-described format.

An example POST request for X-Agent's HTTP channel is available via VirusTotal:
5800cf661d40c54eee988ebt76e1bds7an700d478804352d01230248¢24e7a06e

The decrypted final output is a serialized module message from module
0x1002, command 0x64, with an opaque message body whose contents have a
SHA-256 hash of:

2e0febd1B80fdb77c0ch7bb539042409b7a4c2a0a51030b73f41da288355F52a

Mail External Channel

The SMTP and POP3 channels together make up a common mail channel. The
SMTP channel is used to send messages, and the POP3 channel is used to
receive them. These channels are an alternative to the HTTP channel, which can
both send and retrieve messages. The oldest versions of X-Agent exclusively
used mail protocols for C2 communication.

Incongruous Mail Subject Fields - Hardcoded Values or P2Scheme Encoding

X-Agent sends SMTP messages to the controller with specific magic values in the
Subject line. The presence of these values is enforced by the C2 controller and
by X-Agent when fetching messages via POP3.

The most common Subject line observed contains “piradi nomeri” which refers
to a Georgian government-issued citizen identification number, similar to a US
Social Security Number,

Other versions of X-Agent expect the Subject line to contain an encoded token
for session management, much like the HTTP agent ID token. This data is
encoded using an encoding method called the P2Scheme.

The P25cheme encodes binary data using the standard base64 alphabet (see
Appendix B). The binary data starts with a random 5-byte XOR key, followed by
& 7-byte magic subject token, and 4 bytes for the agent ID, as a UINT32LE:

[UINTS xoxr key{5]] [UINTS magic_subject_token[7]} IUINTI2LE asgent id]

31

The 5-byte XOR key is repeated, extended out to 11 bytes, covering the magic
subject token and the agent ID.

The magic subject token, when XOR-decoded, should have the following value:
55 AA 63 68 6% 6E 61
In other words, 0x552aA, followed by the ASCII string “china”.

The choice of magic token values, using Georgian phrases and the word
‘china’, seems incongruous.

Mail Message Format and Encoding

The mail channel sends and receives messages as multipart MIME email. The
first message part contains a 7-bit UTF-8 representation of "gamarjoba”, which is
Georgian for "hello.”

The second message part is a base64 encoded attachment with the filename
detaluri.dat. Alternatively the file may be named detaluri $s.dat,
where %s is a string representation of the current time. “Deta/uri” means
“detailed” in Georgian. The file may also be called winmail.dat.

The attachment contents are a single raw packet message (see Appendix B).

Air-Gapped Operations

Some versions of X-Agent are designed to operate in an environment without an
Internet connection, such as an air-gapped network. In this situation, X-Agent
relies on human intervention to carry commands and data in and out via
writable external media, such as USB flash drives.

X-Agent will register a local channel for external communication, and use a
module called Net Flash.

The Net Flash module receives notifications from the OS when a new file-system
on writable external media is mounted. The Net Flash module then checks for
incoming module messages, in the following locations:

\System Volume Information*.in High priority incoming messages

\System Volume Information\sys Normal priority incoming messages

logs\data*
\System Volume Information\sys Outbound messages
logs\com*

32

If these folders do not exist, they are created as hidden system directories.
Inbound message files are deleted after they're read.

The X-Agent microkernel contains a message shim for the Net Flash module.
When Net Flash is active, this shim intercepts all outbound messages, rerouting
them before they reach an external channel. Linux versions of X-Agent also
contain this shim, but a Linux version of the Net Flash module has not been
observed.

This architecture indicates that the X-Agent kernel was designed or specifically
adapted to work in air-gapped environments.

Autorun Infection

Perhaps to support infection in air-gapped networks, X-Agent has the ability to
spread via autorun invocation on USB flash drives. Some samples have been
observed with residual strings from an autorun. inf file:

[autorun]

open=

shell\open=Explore

shelll\open\command="System Volume Information\USBGuard.exes"

install
shell\open\Default=1

X-Agent Indicators

Known mutexes:

XSQWERSystemCriticalSection for 1232321
AZZYMutex

Known mailslots (for IPC):
\\.\mailslot\dns_check mes v47313
Packet queue file names:
edg6EB5F98675. tmp
edgb6EF885E2. tmp

zdgbE85F98675. tmp
zdg6EF885E2. tmp

33

Representative Sample Hashes

32717c2876£5622a562d548b55e09657£453b40d7aebl5bh738¢c7R8%dcdectld
5E6b2a0dldo66fcdfled292b4624076714achl6c13512b0061b434ae2a692fal
eeBb636cfalb21c7i9cc7588221dledclead7babB256b72e3dc2ada’5a6bdBbRT
B4chbclcd4ff4590328a7fbecbec21700061lalatadaef618chbh3518159561ad93
fc9a336ce9e5fab09p417d2907e4d4a%ad39£808575854¢cf37307ec67e31493e

Sighatures

The following Yara signatures can be used to detect X-Agent:

rule XAGENT _ ChecksumAlgorithm {
strings:
$s_c_calc_checksum = {BA 04 16'BAD8 325D 77 F6 C3 01 7477 66 8B 5D 77 66 1 EB 66 33 DY OF
B7 DB B2 5D 7? EB 77 66 D1 6D 7? DO E8 8A D8 325D 7?2 F6 {3 01 74 77 66 8B 5D ?? 66 D1 EB 66 33
D9 OFB7DBBOSD ?EB 7}
condition:
1 6f them
}

rule XAGENT__AgentStringsig {
strings:

$s_unigl = "WMrnailslot\\dns_check_mes_v47313" wide
$s5_uniq2 = " 2AVIPTExternChannel@@" ascii
$5_unig3 = "VAMGNxZWvemhjO GOyZQ™ ascii
$s_uniqd = "%s\\zdg6EF8B5E2.tmp” wide
$s5_uniqb = "%s\W\zdg6EBSFI8675.tmp” wide
$s_unigb = "edgbEBSF98675.tmp" wide
$s_unig7 = "adgBEFBRSE2.tmp" wide

$ = "comm isn't success
" wide
$ = "com 6 is success" ascii
$ = "com 7 is success" ascii
% = "com isn't success" ascii
$ ="# EXC: HtrpSender - Cannot create Post Channel!” ascii
$ = "# EXC: HttpSender - Cannot create Get Channell” ascii
$ = "#EXT_5 Cannot create ExtChannelToProcessThread!” ascii
$ = "#EXT_4 Cannot create ExtChannaiToProcessThread!" ascii
$ = "#EXC_2 Cannot create ProcToExt Pipa!l" ascii
$ ="#EXC_1 Cannot create ExtToProc Pipe!" asci
$ ="#EXT_3 Cannot create Process!" ascii
$ ="Calloc 3 error!” ascii
§ = "ere<td>%d</td><td>%02d/%02d/%d %02d:%02d</td><td>%s\Ses</td></tr>" wide
$=
"lautorun]\x0d\xDaopen=\x0d\x0ashel\open=Explore\x0dix0ashel\\openi\command=\"System
Volume Information\USBGuard.exe\" install\x0d\x0ashelWopen\Default=1" ascii
% = "</table>cormm” wide
$ = "comm" wide
$ = "File don’t create
" wide
$ ="V width=800 height=500 />
" asci
$ = "file is blocked another process<be>" wide
$ ="Calloc 1 error! Packet lost!" ascii
$ = "Error Broken Pipe!" ascii
condition:
1 of ($s_unig*) or 8 of them
} .
rule XAGENT__EIfStrings {
strings:
$s_unigl = "WRITE FILE IS NOT SUCCESS<hr>" ascii

34

$s_unig2 = "WRITE FILE IS SUCCESS
" ascii
$5_unig3 ="Terminal don 't started” ascii

$s_unig4 = "Terminal don 't stopped® zscii

$s_unig5 = "Terminal don "t started for executing command" ascii

$s5_unigh = "NSt3tr111_Sp_deleter14CryptRawPacketEE”

% = "dbus-inotifier" ascii
$ = "config/dbus-notifier" ascii
$ = "acho 'exit 0' >>" ascii
$ = "grep -r " asdii
$ =" fusrflib/systemd/*" ascii
$ ="rm -f ~/.config/autostan/" ascit
% ="find ~ -name” ascii
$ =" ~/ config/autostart/*" ascii
$ = "mkdir ~/.config/autostart” ascii
$ ="11AgentKernel” ascii
$ = "2lAgentModule” asci
% ="11ReservedApi" ascii
$ = "8FSModule” ascii
condition:
1 of ($s_unig*) or 6 of them

}

SMTP and POP3 Servers and Accounts

When the mail channel is active, the following SMTP and POP3 servers and
accounts have been observed being used for C2. X-Agent binaries contain
hard-coded credentials for free webmail providers or presumably compromised
accounts.

SMTP and POP2 Servers:

smtp.mail.ru
pop.malil.ru
smtp.yandex.ru
smtp.bk.ru
smtp.gmail.com
smtp.mia.gov.ge
maill.mia.gov.ge

SMTP and POP3 accounts:

nato_poplmail.ru
nato_smtp@mail.ru
kz_popfmail.ru
kz_smtplmail.ru
arkad_i@mail.ru

arkad o@mail.ru

jonathan. smithhhgmail. com
roe, richard@yandex, ru
jehn.dory@mail.ru
colin.mcrael9éBBgmail. com
devil.666.666.130gmail. com
interppolégmail.com
robert.fastand@gmalil.com
jose.karreras@bk.ru

35

karl.fridrikh@yandex,ru
sarah.nyassalgmail.com
ilya.kasatonov@list.ru
zurab.razmadzell@gmail.com
albertboroughlyahoo.com
ahmedOmed@outlook. com
shjanashvili@mia.gov.ge
u.kakhidzelmia.gov.ge
r.gvarjaladzefmia.gov.ge
mala.otxmezurilmia.gov.ge
l.maghradzelmia.gov.ge

€2 Servers and Domains

The following observed C2 domains and IP addresses are most used by the
HTTP external channel,

Domain names:

hotfix-update.com
adobeincorp.com
check-fix.com
secnetcontrol.com
checkwinframe.com
testsnetcontrol.com
azureon-line,com
windows-updater.com

[P addresses:

62.205.175.%6
63.247.82.242
63.247.82.243
64.92.172.223
64.92.172.222
67.18,172.18
70.85.221.10
74.52.115.178
80.54.84.21
80.%4.84.22
81.177.20.109
81.177.20.11¢0
82.103.128.81
82.103.128.82
82.103.132.81
82.103.132.82
83.102.13¢6.8¢
28.198.55,14¢
94.23.254.108
201.218.236.29
203.117.68.58
216.244.65.34

36

Appendix A

Sofacy LNK Persistence File

The following LNK file shows how Sofacy creates persistence using this method.
This can also be found in VirusTotal with a SHA-256 hash of:

02527cd241d8b5256034b21fa5672018&138421bc575ceab8783a018f6404ac0

Windows Shortcut information:
Contains a link target identifier
Contains a description string
Contains a relative path string
Contains a working directory string
Contains a command line arguments string
Contains an icon location string
Contains an icon location block

Link information:

Creation time : Jan 06, 2011 21:30:40.883625000 UTC
Modification time : hug 14, 2007 02:43:56.000000000 UTC
Access time ¢ Jan 07, 2011 06:47:58.593750000 UTC
File size 1 622080 bytes
File attribute flags ¢ 0x00000020
Should be archived (FILE_ATTRIBUTE_ARCHIVE)
Drive type : Fixed (3)
Drive serial number : Oxec6bd8bll
Volume label H
Local path : C:\Program Files\Internet Explorer\iexplore.exe
Description : @"%windir%\System32\ieduinit.exe",-732
Relative path : ..N.oNLNL NG U\ALL Users\Application
Data\Microsoft\MediaPlayer\service.exe
Working directory : C:\Program Files\Internet Explorer
Command line arguments : "C:\Program Files\Internet Explorer\iexplore.exe"
Icon location : %ProgramFiles%\Internet Explorer\iexplore.exe

Link target identifier:
Shell item list
Number of items H

Shell item: 1

Class type : Ox1f (Root folder)
Shell folder identifier : 20d04fe0-3aea-1069-a2d8-08002b30305%d

Shell felder name : My Computer
Shell item: 2
Class type 1 0x2f (Volume)

Volume name 8y

Shell item: 3

Class type : 0x31 (File entry: Directory)
Name : Documents and Settings
Modification time ¢ Not set (0)

File attribute flags : 0x00000010

Is directory (FILE_ATTRIBUTE DIRECTORY)
Extension block: 1

Signature : Oxbeef0004 (File entry extension)
Long name : Documents and Settings

Creation time : Not set (0)

Access time : Not set (0)

37

Shell item: 4

Class type

Name

Modification time

File attribute flags

Is directory

Extension block: 1

Signature

Long name

Creation time

Access time

Shell item: 5
Class type
[ame
Medification time
File attribute flags
Is directory
Extension block: 1
Signature
Long name
Creation time
Eccess time

Shell item: §

Class type

Hame

Medification time

File attribute flags

Is directory

Extension block: 1

Signature

Long name

Creation time

Access time

Shell item: 7

Class type

Name

Modification time

File attribute flags

Is directory

Extension block: 1

Signature

Long name

Creaticn time

Eccess time

Shell item: 8
Class type
Name
Modification time
File attribute flags

¢ 0231 (File entry: birectory)
All Users
Not set (0)
0200000010
{FILE_ATTRIBUTE DIRECTORY)

Oxbeef(004 (File entry eztension)ﬂ

Bll Users
Hot set ()
Mot set ()

: 0x31 (File entry: Directory)
Application Data
Not set (0}
¢ 000000010
{(FILE_ATTRIBUTE DIRECTORY)

Oxbeef(004 (File entry extension)
Application Data

Hot set (0)

Hot set (0}

0231 (File entry: Directory)
Microsoft
! Hot set (0}
¢ 0200000010
{FILE _ATTRIBUTE_DIRECTORY!

(Uxbeef0004 (File entry extension)
Microsoft

Hot ser (1)

Kot set (0]

0x31 {File entry: Directory)
MediaPlayer
Hot set {01
1 000000010
(FILE_ATTRIBUTE DIRECTORY)

Oubeefl004 (File entry extension)
MediaPlaver
Hot set (0}
tlot set ()

0:32 (File entry: File)
1 service.exe

Hot set ({1

(00000020

Should be archived (FILE_ATTRIBUTE_ARCHIVE)

Extension block: 1
Signature
Long name
Creation time
Access time

bistributed link tracking data:
tHachine ildentifier
Droid volume identifier
Droid file identifier
Birth droid volume identifier
Birth droid file ldentifier

Oxbeef0004 (File entry extension)
service.exe
Hot set (0)
kot set (0%

up
pid36aso-6aal-48de-ad8l-d07hdcl(819d
bécctd56-19df-11e0-b0GEE-52540012345¢6
bfd3gatt-faal-48de-ads81-do7hde10819d
Pdoctd58-19dE-11e0-h0E8-525400123458

38

Appendix B

X-Agent C2 Raw Packet Decoding

Base64 Alphabets

X-Agent uses two base64 alphabets during message encoding. The first is a
standard base64 alphabet, used for mail messages (SMTP and POP3):

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwzyz0123456789+/
HTTP messages are encoded with a slightly different web-safe base64 alphabet:

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789~

Raw Packet Message Format

Raw packets are a generic container and packet format, used to transmit
encrypted module messages over external channels such as HTTP, SMTP, or
POP3.

Raw packets are transmitted one-by-one, each in its own external channel
message. For example, the SMTP mail channel sends each raw packet message
as a mail attachment file. The size of the raw packet message is the size of the
decoded attachment.

Raw packets include the following fields

[UINT32LE agent id]

[UINT16LE crc([2]]

[UINTS encrypted data[message size]]
[UINTS8 session key[4]]

The raw packet message format was meant to be abstracted from the external
channel, but there is one implementation inconsistency. The HTTP external
channel XORs the agent /D field with an XOR key intended to obfuscate the
previous header. The mail channels do not do this, and it is likely an
unintentional oversight.

Raw Packet Message CRC Checking

39

A CRC is calculated over the encrypted data and session key fields and then sent
as two UINT16LE fields in the packet. The first is a polynomial seed for the
CRC-16 algorithm, followed by the calculated (good) CRC value.

Here is an implementation of the CRC check functionality in C++:

unsigned short crcl6(const unsigned char* input, size_t len, unsigned short poly_seed) {
unsigned short result = @;
for (size_t i = 0; i < len; i++) {
unsigned char x = input[il];
for (int j = ©8; j < 8; j++) {
if ((x * (result & @xff)) & 1) {
result >>= 1;
result *= poly_seed;
} else {
result >>= 1;
1
X >>= 1;
}
}

return result;

}

bool check_crc(std::string* input) {
unsigned char header[4];
unsigned short seed, expected_crc, actual_crc;
if (input->length() < 4)
return false;
memcpy (header, input->c_str(), 4);
seed = header[@] | (header[1] << 8);
expected_crc = header[2] | (header[3] << 8);
actual_crc = crcib(reinterpret_cast<const unsigned char*>(input->c_str() + 4),
input->length() - 4, seed);
return (actual_crc == expected_crc);

}

Raw Packet Message Decryption

Raw packet messages are RC4-encrypted using a key built by concatenating a
static private key with a public key that changes each packet.

A few simple steps can be used to decrypt a raw packet message:

1. Retrieve the agent ID (first 4 bytes of the message) as a little-endian UINT32.
Discard these message bytes from the stream.

2. Retrieve the CRC-16 polynomial seed value, and the expected CRC-16 value,

as the next two UINT16LEs (immediately following the agent /D). Discard the
CRC bytes (4 in total) from the stream.

40

3. Calculate the actual CRC of the remaining packet bytes, seeding the CRC with
correct polynomial seed. This should match the expected value.

4. Create the full RC4 key for the message which starts with a 50-byte static
private RC4 key:

3b c6 73 0f 8b 07 85 cC 74 02 f£f cc de <7 04 3b fe 72 f1 5f
5e ¢3 8b f£f 56 b8 d8 78 75 07 50 eB8 bl dl fa fe 5% 5d ¢3 &b
£f 55 8b ec 83 ec 10 al 33 35

Then append the last 4 bytes of the message (the public key) to create the
full RC4 key. Finally, discard the last 4 bytes of the stream (the public key).

5. Decrypt the remainder of the message stream using the full RC4 key.

6. Check that the last 11 bytes of the decrypted message are the magic token
bytes:

30 ¢8 Y%e eb 6k 34 %e fa 8b a2 1f
Discard these bytes.

The result is a clear-text, serialized module message.

41

NATIONAL
SECURITY

ARCHIVE

National Security Archive,
Suite 701, Gelman Library, The George Washington University,
2130 H Street, NW, Washington, D.C., 20037,
Phone: 202/994-7000, Fax: 202/994-7005, nsarchiv@gwu.edu

