DIGITAL COMPUTER NEWSLETTER

 It wevit o mally he tm
 percent of information oen
 weotere difind semporw mefore

offict of naval risiarch. matmimatical scitncts division

A以NIIAI

malle of Cuntrint


```
    Hn:+NIN
    INr F MV名
    IHE N||NAI
```



```
    \therefore Irojori Whtrlwinal
    A Nolay llindal Caflpulor, limperial Callege, Univ. ol lamdan
    4. Suam Connumter Mruiel IV, at furlah, swllaorland
10. IJata Namolling and Converuton Equ'furnont
    Stovid EnglneerinM Data Converalon Equigment
    *tanal Corpm Anyular loumitam Fincoidera
    Aafoconling
```


THE RHA LH91 COMPUTAR

The firat 1101 Electronte Computer way dellverad by Engineering Remearoh Asacolatea, Inc., to the United Statea Govarnment in lato 1980 and vian In operation olyht daya after dellvory. The magnotio drum momory, whioh atorem 1280 blta of information par squaro inch, hus a muximum atorage capacity of 10,38424 -binary dialt worda. For introducing information into the computor, photoelectrically rad punched tapo in employed. Input data may be converted from decimal or ostal to binary form in the computer and uutput data may be convorted from binary to decimal form and aent to an electric typewriter for typing, or to a paper tape punch $1 /$ the datitare to be reused.

In order to incroane flexibility of control, the commanda which the computer can carry out are atored in the magnetic druan memory and can be altored by arithmetic operationa. Control is of the aingle addreas type with provision for 38 bullt-In commanda. It requiren, multiple prociaion operatlona can be programmad.

Complete loading of the storage drum c.in be acoomplished in less than eight minutes. Although minimum access time to the arithmetic unit from the drum is 32 microseconds, the maximum time is determined by the time requirad for ane complete drum revolution, which is 17 milliseconds. By proper programming, the time required for the addition of two numbers can be as low as 96 nilcroaeconde, und for multiplication, 352 microseconds, including; procurement of both operands and the next command. However, where the problem requires random acceas to the memory, the apeed of calculation is dependent upon the time for the complete drum rovolution. By using care in the mapping of the prosram on the drum, the speed of operation may be obtained which approaches maximum operational speeds.

DISCLAIMER NOTIC

THIS DOCUMENT IS BEST QUALITY AVALABLE. THE COPY FURNISHED TO DTIC CONTAINED

 A SIGNIFICANT NUMBER OF PAGES WHICH DO NOTkbproduce legibly.

 ta mohedulas for the month of June.

THE NATITUTA YOK ADYANCED RTULY GOMPUTER

 study eomputor han been completely intexialed into the ayatem nuld vartoum tamta have been made involving the interplay of the arithmetio anit memory organa. Thoae teata are procoeding matlafactorily.

During the ame period extenaive life toath of the mulliplior wore comploted. Theme tenta were carried out with the unit uparating at a high duty cycle and fully covered all mapecta of the altuation.

Varloua input-output organa are being bullt and teated at the proaent time.

ABERDEEN PROYNG OROUND COMPUTEBS

The FNALC

The ENIAC completedita !ifth year ax an operating muchine in Fobruary 1081. Oradual improvementa have been made aince the adoption of the converter code, the moat recent beina a change in the addrose terminology and an addition of a ama! unit to make automatic the awitch between control from the function tables and control from curds.

During a recont perlod (November 1950 to March 1981), the ENIAC completed the computations for the following problems: (a) an inveatigation of some of the properties of interior balliaticis, (b) an ovaluation of error in axially symmetric supersonic alrflow, (c) two additional programs for the dotermination of the equilibrium composition of a four component system of fuel elements, (d) tiwe complete bombing tables, (e) the reduction of data for 9,980 puints of guided missile date, and (f) two programs involving normni trajectory computations.

The EDVAC

During the period covered by the current report the IEDVAC system has been bicurbit tu the condition of sallsfactory operation with the exception of the mumory amplifier assemblies. The original amplifiers are not considered satisfactory and new ones have been under construction and have just been dellivered. It ls hoped that the installation of the new nemory amplifiers will conclude the contruction and testing of this unit.

NATHNAL. HLR KAI UF STANDARUB WESTARN AUROMATTG COMPUTER (BWAC)

Impmovemo ita have boon mato in the tomilng inchniquen and mothods of adjuating the memory,
 ngetagd with the y ghing of problema.
 reola of papor tape and a amaller une for handling ahorter plocen of tape.

A masnotlo lapt unfl has been dellvered from thaythoon Corporation and work la proceoding on Ita Integratlon into the SWAC inpul-output nymtem.

Progrean in alna belny mude on the necesaary circuitry to onable the magne le drum mamory to Le unod Ia an muxiliary momory for the SWAC.

NATIONAL BUREAV OF STANDARDS EASTERN AUTOMATIC COMPUTKR (SEAC)

Statiatien were com, illed on the oporating performance of the SEAC for the monthe Oatober through December 1880, Duriny the time which wae aet aside for the dolution of probleme (76 hours per woek), the machine was in yood working order for 04 per cent of the time in October, 70 per cent of the time in November, and 80 per cent of the time in December. During the lay week in December, the machine wus in good wrrking order for 90 per cent of this time. A wide variety of problema have bean run on the SEAC. Including the following:

Total Hours

Problon

Linear Programming, OAC

Number Theoretical Problems

Subsuinpling Design, Census08

Relative Abundance of Clements $\quad 4 B$

Electron Trajectories40

Laplace Equation by
Monte Carlo Method

Briof Description

Solution of large systems of linearalgebraic equatlons pertuining to program planning for the Air Force.

Computation of factorization tables, tables of primes, primitive roots of primes, diophantine equations, and Haupt exponents.

Determination of sample sises corresponding to minimum variance in a census, using sampling methods.

Solution of a 27 th-order system of ordinary differential equations relating to the neutron capture theory of the formation of the elements in the universe.

Solution of a second order nonlinear differential equa tion describing the paseage of electrons through a cavity.

A test of the Monte Carlo Method by solving a known problem in two dimensions.

Une han beon inade of two modele of the new magnetlo tape tranaport mechaniam which ren quire in reola or aervon (tie capea are held botween parallel glawe platea). In this mechaniem the only inertia to be overcome, whin atarting or atoppling, in that of the tape pasaing ovor cupatan hoade. Rading, writiky, and ravarmel oparationim hava been parinemed completely unitor the machine'a control, Equipment to provide aclevitive arasure under manhine control is now being developed.

The Williama tube memory, designed for 1084 apotn per tube, in currently being proved in with 206 apotm in order to obviate pousible difficultion of aplath (rant-around ratio). The full williame ayatom wan operated auccemafully on teat routinem for over five houra, on two occauluna. It ham almo worked aucceatally for aoveral hours in integrated uperation with the complote machine, on a prime number routine. Thie partieular routine atorem ordera and emporary reaulte in the electroatatic meniory and does moat of the basio computation there, in ordor to mehieve tnoreased apwed. With the - lectrontatlo memory, it took tia minutes and 8 soconda to compute that $98,090,090,077$ ta a prime number; with the acountio memory, the aorreaponding computation time wan 36 minutes, or three IImea at long. A problem of aignificance la now boing tried, using both the acouatio and electroutatio memory in combliation.

PROJECT WHPHLWND

During January, Fobruary, and Muren the Whiriwind computor has been operating usefully with eloctroatatio atorase. One third of the time, about 30 houre a wook, is divided between scientific and enginuering enmputation and the study of reel-time control probleins. During theac asalgnod application perioda, computer operation in now atiafactory about 88 per cent of the time. The other twothirde of the tima in devoted to improving reliability, oxtending the torminal facilltiea, and routine maintonance.

Whiriwind is at presont using 950 registers of olectroniatic atorage. Input is by means of punchod paper tape. A photoelectric tupe roader haa been recelved and will shortly be connected to the computer to incroace the apeed of reading in programe and data. An output typewriter is in use for printing computod resulta. An oscilloscope diaplay is avallable for problems more readily studled by this moana. A magnetic tape drive has been recelved, and circults are bjlig built for ita incorporation into the computer.

RELAY DIGTYAL COMPUTER, EWPERLAL COLLEGE, UNIV. OF LONDON

K. D. Tocher is bullding an automatically sequenced digital computer at the Imperial College of Science and Technology. The operation of the computer is serial and a three-addrese code, nimilar to the one originally devised for the National Physical Laboratory ACE pilot model, is used. Addition of two ten-binary-digit words takes approximately a quarter of a second; round-off multiplication takes approximately three seconds. Exact multiplication and double length operations on words can also be performed. Division will be automatic.

Approximately 1800 high-speed rolays and 1200 slow-apeed relays are used in the computer, both for the orasable memory elements and for the gating elements. This rather large number of relays is due to the inclusion ul several special facilities, which can be cailed for automatically, and not to the sise of the erasable memory store, which can hold only twelve words of ten binary digits each. A slower, auxiliary store is provided by punching equipment and Hollerith tape. Standard Hollerith punched card machlnes are used in the Input and output equipment. (From 1 February 1951 ONR European Scientific Notes.)

LUSE COMPUTER MOUEH IV AT ZURICHJWITZAHLAND

In July 1050, a snquence-controlled computer was Inatillud at the Inatitute for Applied Matheinatien of the Swlaa Foderul Inntitute of Technolory at Zurteh. It wan conutructed by Konrad Zuse of Neukirchen, Germany, In conaultation will E. Stiofol and A. Speiner of the Inatitute. It is a relay computer with 2200 tolophone rolayn and 20 atep awltches and employ mechanical atorage elementa devolopert by Zuan. Althought the atorage capacity is now only oi numbers, it is hoped that it can be incrwased to 1024 :umbers. Access time to the memory is one-half second.

The machini operatos in the binary aystem, oinploying a floating binary point with oxponent ransing from 63 to - 31 Transiution from decimal to binary numbers and vice-versa is fully automatic. Numbere arofed in by meana of keyboard or punched $95-\mathrm{mm}$ movio film, wherens the output poea to a typewriter or punchad film which can be fen back to the film-read unit, thua providing external ntorage.

For Intruducing instructiona Into the computer, a coded sequence is punched into movie film, each instruction having 8 bliary digita, which is fed into ono of two stations. The computer executes the following orders: Add, subtract, multiply, divide, take the s.il are root, form the ubsolute value, call conditionally, stop conditionally and uncondittonally, and skip conditionally. The skip order causes all the following orders up to a starting order to be diaregarded and thereby enables suveral subsequences to be punchod on one loop of tape.

The time for addition and subtraction is approximately 1 second, for multiplication 2.5 sec , for diviaion and square root 6 sec, all including transfors irom and to storage. To skip an order takes 0.2 sec.

DATA HANDLING AND CONVERSION EQUPMPNT

Stavid Engineering Data Conversion Equipmeni

Stavid Englneering, Inc., 312 Park Avenue, Plainfield, N. J., has developed a data conversion recurding and play back equipment which permits the measurements ois servo orders to be made to an accuracy of $.01^{\circ}$. To maintain this accuracy the information contained in the servo order is converted into digital form at a pulse repetition rate of 60,000 pulses per second. Two ring counters serve as both counters and memory clrcults in order to slow the pulse repetition rate down to a frequency which is recordable on magnetic tape. Nine servo orders are monitored and sequentially sampled at the rate of one order per twentieth of a second. The measurements of the servo order are recorded on three-channel tape in the form of pulses. On the first track, one pulse is the equivalent of $.01^{\circ}$ of servo orders. On the second track, one pulse equals $.25^{\circ}$, and on the third track, one pulse equals 10°. Thus no more than 40 pulses are required on any track to fully define the measurement of the order.

Equipment is now being developed which will automatically accept the information from the magnetic tape and transcribe it into IBM punch cards where one card contains one measurement of each of the nine input orders.

Signal Corps Angular Position Encoders

An angular position encoder to generate a $\mathbf{1 5 - d i g i t}$ binary number, which 19 a measure of the angular position of an input shaft to $.01^{\circ}$, has been designed at the Signal Corps IEngineering Laboratories, Fort Monmouth, New Jersey, and construction of two modele by a contractor is expected to be completed in March 1951. The heart of this device is a special code pattern consisting of transparent and opaque areas laid down on a glass disk $9-1 / 2$ inches in diameter. The pattern is made by
photographic contact printing firom a sultable master. The disk is carefully mounted between ber cinge and rotates with the input shaft. An optical reading systom, consiating of a high intensity stroboscopic light source, a narrow difining silit, and fifteen miniature photocella, will be used to "read" the shaft position at regular intervala, uaing a binary numbar sequence which provides freedom from transition arrors and which is easily converted to the standard sequence. The complete encoder, including lamp, photocella, and photocell preamplifiers, will be about $12^{\prime \prime}$ in diaineter and $6^{\prime \prime}$ deep, and will mount on any flat surface. A ring-shaped flange is provided for centering with respect to the mount. All delicate surfaces will be protected from dust, etc., and the whole assembly is expected to be sufficiently lightweight and rugged for contemplated uses.

One application for this encoder is in connection with a digital servo for remote shaft positioning with very high accuracy. In preparation for the construction of such a servo, an experimental pilot model, oporating with 10-digit optical encoders, was constructed at the Signal Corps Engineering Laboratories and completed in June 1950. Studies are now being made of the dynamic behavior of the 10 -digit servo.

The major components of the 10 -digit piiot model accommodate fifteen binary digits, permitting their reuse as components of the high-accuracy servo, after completion of the $\mathbf{1 5 - d i g i t}$ encoders.

Zatocoding

Zatocoding is the name given by the Zator Company, 79 Milk Street, Boston 9, Massachusetts, to its system of coding punched information cards for efficient machine selection by subject. The process employs the technique of superposition of random subject codes (Indentations on the edge of the curd). It is not necessary to store the cards in any alphabetical or other subject order or to select references according to a definite classification scheme. Copies of an occasionally publlshed journal, desilng with the problems of the organization of knowledge, can be obtained from the Company upon request.

> Comments, letters to the editor, and additional contritbutions for inclusion in the Newsletter should be addressed to:
> Code 434
> Office of Naval Research
> Navy Department
> Washington, D. C.

