

TABLE OF CONTENT

1. The IMAA.
2. The i:Allal

The And t
Tho GWAI
Whirlwind I

the Hurrauytio 1 atoremtary Coboputer
M, Naval litas ny (Around Caleulatara

- Aberdeen roving Cram mi C'onfantern

The NiNA
The GRDVAC
The miJVAE
SHElIA: PURPOSE COMPUTEr

1. MADI)\IIA

DATA HROCMBIINE: AND CONVBHSKOIS EQUIPMENT

1. The Charactron
d. Wallind-Plerce Equipment
2. Durex Magnetic Wire storage
3. CRC FerrumResonant rlip-Flop

GENERAL PURPOSE COMPUTERS

The Paras

The Flight Research Laboratory (formerly Cite of Air Research) Automatic Computer, being built by the General Electric Company, Syracuse, Now York, is to be delivered to Wright Field in the spring of 1058.

It in a coded decimal, single address, serial machine using a 10,000 word magnetic drum memory, magnetic tape input and output and typewriter input aid printing.

The Information contained in this issue was gathered in early December 1951.
-1 -

- \therefore an ha hem one od
\qquad

DISCLAIMER NOTICR

THIS DOCUMENT IS BEST QUALITY AVALABLE. THE COPY FURNISHED TO DTIC CONTANED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

The cadac:

In the dealan of the computer, amall aiat and minimiantion of tho number of tubea were mitrenmed, In all, lhere are almout las mhen and aso0 cryseal deades ill the computer. The word
 -1. Input and output are by olocitid typewritera, will numbera being expreaned in octal form.

The SEAC

An an outarowth of the collaburalive program now under way to produce several modified sEaCa, reviadd deaigna have been developed for the phyalcul form of the baste bullding elementa in the marhine. A single, plug- In pa kage has been designed for ull of the basic tube and diode functions, another package for the electrical delay lines, and, finally, one for the specialized delay lina terminations.

Almost all of the machine circuitry will be constructed out of these three packages. The packagos have been tested and ure now in hand production. Typical circuits are being assembled and proved in on the present SFAC. For exumple, Internally the loek -out counter of the Willama memory is composed of parkuges, and in the auxulary equipment the same packages are used in the cutscriber.

An external selector has been put into regular operation on the SEAC by means of which automatic selection may be made from umong any if 10 different input-output units.

The SWAC

Since the last report in this Newsletter, the accelerating voltage in the cathode ray tubes of the memory system has been lowered, with a consequent improvement in flaw conditions but an accompanied increase in splllover. Under these circumstances, the stock of cathode ray tubes had to be resorted in order to obtain the best useable tubes. Several 3 KP1 tubes have been delivered and have been put into use with good performance with respect to spillover.

The introduction of the magnetic drum into the computer system is well under way. Both a new small single and a new double tube plug-in unit have been designed. The initial circultry on the drum will utilize a pulse frequency of approximately 60 to 70 kc , which will give a distinct advantage in that it will simplify the circuit design. The system as now being constructed will give a maximum memory of about 5000 words with an average transfer time of approximately 500 microseconds per word, which is obtained by transferring from the drum to the Williams tube memory a sequence of numbers during one revolution of the drum, starting the actual transfer at any arbitrary word and stopping at the end of one revolution.

Whitiwnd:

 readily performed tank an that a prompective umer can wilhout diffleully ant up him own program rethor than require tho motvicon of all oxperioncod prourammer. An atope in implomenting thin plan, a well-catalugued and samily amad library of mubronthom in betng bullt up; explanatory texta
 permonnel provifo aditio and amaintance to the uner are being worked sut.

A number of perigle intorestod in auch diverne probloma an digitally ycontrolled milling machinen, misuife erajoctorita, oll reaervoir proxtuction, amblpolar diffuaion, wad optical eonatantu of thin motal doponita have already aot up accomaful programm of their own. Further development of the nubrouthe lithrary und the forthcoming expanaion of the prosent limitod (3s8 rexiaters) storaxe caparliy will greally facilltate such wirk.

A second bank of 10 storage tubss ham been added to the computor and will acom be avallable for unn. This will at loast double the aturufe capacity uaed up to the present.

Mopre School Automatie Compular (MSAC)

The final design of the bamic circulta for the MSAC have heen completed. Preparation of schemalic and layout diagrums was initiated, and standardisation of circuits und layout techniques was accomplished through the use of technicul design memoranda describing the basie circuits. Over 50% of the schematics for the MSAC have been completed.

Construction of a single unit, the Dispatcher Memory Loop, is now under way. This unit containa most of the typical circuits of the MSAC and will occupy one rack of the machine. Tests will be conducted on this rack to determine the final operating characteristics of the circults before the remuinder of the machine is constructed.

Procurement of components is continuing, and fabrication of units, such as pulse transformers, delay lines, and germanlum diode clusters, is planned in the near future.

The Burroughs Laboratory Computer

Enhancements have been made in the Burrunghs Laboratory Computer to Increase its memory capacity, to increase the flexibility and capacity of the teletype input-output system, and to incorporate automatic multiplication and division.

The memory capacity has been increased from 800 nine-decimal-digit words to 5300 nine-decimal-digit words. The storage is divided into 10 bands of 500 words per band plus 300 words that are common to all bands. The desired band is selected by a programmed instruction. Addresses from 100 through 399 are common to all bands, but addresses from 400 through 899 reguire that the proper band switch be set up. This change required the addition of 90 read-write heads on the drum plus the necessary circuitry. The computer was shut down 31 hours and 35 minutes for this enhancement.

Multiplication is accomplished by repeated addition, and division is accomplished by direct subtraction. Both operations require an average of 50 milliseconds for their execution. This change required two magnetic shift registers and the necessary Pulse Control Equipment used for the control circuits. The factors are stored in the shift registers to obviate making reference to the drum during the operations. An eighteen-digit product and the quotient plus the remainder are

 the followinte:

Itranmmittor dimitbutorm,
2 pare printerm, und
2 roperforulora.
Any nombination of the above oan be programmed to alluw better control of the format of the printed pase and to allow the incluntun of an input word with output worda on a perforated tape.

The problenim wulved on the coniputer include the following:

> molution of almultaneoun equation,, Inverilon of matricen, cam dealgn, parametor calculations of computer circuite, aimulation of lonical networks, random number generation, and ample production control problem,

Tho Naval Proving Ground Calculators

The Aiken Relay Caleulator (Mark In) continues to uperate six days a week, 24 hours a day. During the parat three montha it has been occupied with various itoms relating to ballistic research as well at the preparation of general ballistic tables for bombs and rockets. Experience with a new oxparimental checking circuit for automatically checked results has thus far proved to be a valuablo asset, especially in helping to locate the sources of many machine errore. The resulta of the corriputation have alsu been more reliable.

The Murk III Calculator is also being operated six days a week, 24 hours a day. The relative percent of good running time is under that of Mark II, but significant progress has been made during the last month. During this report period, the Calculator has been used entirely for the integration of trajectories in connection with the preparation of a general ballistic table.

Aberdeen Proving Ground Computers

The ENIAC

A new function table control punel of 4 switch set and 83 plug board controlled lines was put in operation with the Eniac in September. The new table was desianed and constructed by the Computer Research Branch and has performed satlsfactorlly. The new unit increases the program capacity of the Eniac by 30%, and since it is plug board controlled, it shortens somewhat the set-up time required for changing problems on the machine.

During the period 1 August through 31 October 1951, the Eniac has completed computations for 27 different problems (which involved 56 changes of program) dealing with such varied topics as:
a. bomb drag studies,
b. guided missile flight path trajectories,
c. reduction of yaw and swerve data from transonic missile firings,
d. gamma ray and neutron transmission through various thickness of matter by Monte Carlo techniques, and
e. firing tables and bombing tables.

The ORDVAC

The Ordvac has been completed and testing is in progress. During the teat period the Ordvac has carried out test operations which used all of its orders for periods frequently reaching four to five hours and on one occasion reaching twelve hours without error. At present, it appears that the

The ELOVAC:

The firnt larko wseale problem, involving tho dotermination of tho proper valuee of matrions up to the twelfth order was sutisfactorily completed on the bidvat, shanfylag that the machine is ready for production.

A numbor of testlak and computational rumt thes. essential for the troatment of Iarge-scale problemis, are prosently boing developod.

SPECIAL PURPOSE COMPUTER

MADDIDA

Recont engineering changes in the MADDIDA digital differential analyzer have produced such radical improvements in the computer's officiency and matheniatical flexibility that carlier models are now considered as obsolete. Northrop Aircraft is recalling all MADDIDAs previous to Serial No. 6 and bringing them up to date.

The most significant advancernent has been the installation of a test panel for marginal checkIng, which enables the nperator to "xamine quickly the operating margin of all parts of the computer. Operating experience has shown that through the use of this check. panel virtually trouble-iree operation can be obtained. On a recent test run of MADDIDA No. 9 , covering a pericu of 300 operating hours, scheduled and emergency maintenance totalled less than 2% of total time.

A targe number of circuitry changes have been made to increase the margin of reliability of the computer and several new features have been added. Among these are a time ceversal switch which permits the computer to halt and "back up" in the middle of a problem, an overflow alarm which automatically halts the computer and notifies the operator if a variable starts to exceed its expected range, and on the latest machines a logical change which permits the cocinr to multiply any variable by a constant without increasing the number of integrators used.

In the line of auxiliary equipment, a drum type digital graph pioter has been developed recently by the Engineering Research Company of Los Angeles. Thorough testing has shown this plotter to be well engineered and extremely reliable. Northrop Aircraft has recalled all early models of the decimal tabulating equipment for MADDIDA due to the fact that they were difficult to maintain in operating condition. A new model decimal tabulating output device is now under test and is expected to be in production within 30 days.

A new MADDIDA installation has recently been completed for the Air Force 3151st Electronics Group at the University of Utah. Arcording to present schedules, six more MADDIDA installations will be made in the next few months.

DATA FROCESSING AND CONVERSION EOUPMENT

The Charactron

The Charactron is a special-purpose cathode-ray tube, developed by engineers of Consolidated Vultee Aircraft Corporation, Los Angeles, California.

A matrix containing character-shaped openings is located between the electron gun and the fluorescent screen. A stream of electrons directed through the matrix openings results in a shaped beam that provides a presentation of characters on the screen of the tube where they can be read or photographed. An electrostatic deflection system is utilized for character selection in the matrix, and either electrostatic or electromagnetic deflection is used for positioning character images on the screen. Thus, the proper sequence of applied deflection voltages selects and positions matrix characters so that input signals are translated into visual intelligence.

Among the mose feneral applicntions of the (haractron are (1) data converston and tatmation of analoguo or digital informathon, (2) computw roud-out, (3) high-wpread printing, (4) high-spoed commundeat fons, und (5) mondtoring and messialfe display equipment:

One possible type of data converter is one that will medsure physical quantlin: the form of electrieal potentiale and present them as three-place numerals on the Charaction serpen. In such t device, the voltage Ievels ran be convelted to decimal number values within a fow milliseconds and with an uecuracy of one part in one thousand. Amother possible type wf eonverter will be used in combination with hikh-speed printers of roded information. This equipment (referred to as a Charactrontype Printer) will have printing rates ranging from 1000 to 10,000 characters per second, thus satisifyng the needs of voluminous pronting at high ipereds. Printing can be done wh ofdinary papor, using a dry photographic processi.

Wallind - Plerce Equipment
Thi Wallind Pieran Corporation, 100 Bund Street, Redondo Beach, Callfornia, which was formed in January 1951, is now complethne woin on two cominati, fot the Naval Electrontes laboratory, San Diego, California, In the course of this work the following pieces of equipment are being developed:
(1) A digital-to-analogue translator having an accuracy of . 1 办. Sixteen serial, ten -place binary numbers are translated into 16 output voltages having a range from +50 volts to -50 volts.
(2) An analogue-to-digital eranslator which converts the angular outputs of 16 shafts to 16 ten-place binary numbers and fransmits this information serially in less than one second.
(3) A digital pick off which senses shaft rotations to less than $.1 \%$ (ten binary places) with negligible load on the shaft being sensed. Sampling rate is 50 times a second.

Aurex Magnetic Wire Storage

Some years ago, the Aurex Curporation, 1117 N Franklin Street, Chicago, Illinois, developed a new magnetic wire recording device, after which special prototypes were developed and built under an Office of Naval Research contract.

It is essentially a cartridge containing two opposite cavities in which the wire may be colled naturally on the inside of one and drawn from the center of either cavity to the other by means of a revolving shaft and a controlled pinch roller unit which is positioned between the cavities when the cartridge is mounted on the unit.

The cartridge may be made in different forms to accommodate a small amount or up to many thousand feet of wire. The smallest cartridge need be not over one and one-half ($1-1 / 2$) inches in diameter. The wire has been run without any difficulty, whatever, up to 27 feet per second, and can be run faster. Recording experiments indicate considerably greater efficiency than is now obtainable with wire. Since the cartridge is stationary and only a few inches of wire are in motion, inertia is no problem and the starting and stopping of the wire is prartically instantaneous.

CRC Ferro-Resonant Flip-Flop

The CRC Ferro-Resonant Flip-Flop, which utilizes the principle of ferro-resonance to produce bi-stability in a simple series LC circuit, has been placed on the market by the Computer Research Corporation.

With the establishment of the basic flip-flop design, laboratory work is now going forward on packaging and embodiment in counting and other devices. A decade ring counter has been constructed which employs no tubes or diodes and functions up to 20 kcs . The counting urit proper (exclusive of neon read-out) occupies a space $1^{\prime \prime} \times 2^{\prime \prime} \times 3^{\prime \prime}$. Actually, it is feasible to combine the flip-flops in rings of twenty or more elements. Thus, it also becomes possible to divide incoming pulse rates by any integer between two and twenty. Furthe: development has been in the direction of increased speeds and the most recent flip-flop (Model MC) functions at the rate of 100 kcs .

