Australian Government

Department of Defence
Intelligence and Security

Defence Signals Directorate - Network Vulnerability Operations

UNCLASSIFIED

Contents

EXECUTIVE SUMIMIAIY oottt e e e e e e ettt b e e e e e e e eeeaa b s eeseeesaeesssaaeeeeeeeennssnnnnns

Test Case 2 — Redaction of Embedded Graphicsccccuviiieeiricciiiiiiee e e
Test Case 3 — Redaction of a File Containing Historical ObjJectS.......cccceeeeviiiiireeeeeeeeciieeeeee e,
Test Case 4 —Redaction Of FOrM Datacceevieiierienienieneerecsee ettt
Test Case 5 — Redaction of Obscured CONtENt........cceceeieeriirieiieieeeee e
Test Case 6 — Redaction of ENCrypted PDF FileScccuviiiiiiiieiciiiee ettt
The “Remove Hidden Information” and “Sanitize” Features of Acrobatccocoeeeiieiiiniennenns
Examples of Poor Redaction TECHNIQUEScueiiii it e e e e ree e e
Example 1 — Drawing a Box over Sensitive TeXt Or IMages......ccoccvvvivieviieeeiiieee e eriree e ssieee s
Example 2 — Simple Deletion Of TEXE ...c..uiiiiciiei ettt e e e re e e e
Example 3 — Changing Text/Background Colour to Obscure Contentccceeeveeecveeeiieescreeeneenns
Yo 01T o | SR
RETFEIENCES ..ttt ettt e st e s bt e e s ab e e s ab e e sabeeeneeesareesaree eeas

o] I UK =Te I FoY g Y a =1 V] 1SS

NOTE: THIS DOCUMENT CONTAINS PRELIMINARY TECHNICAL ANALYSIS FOR
IMMEDIATE RELEASE TO APPLICABLE PARTIES. SUBSEQUENT ANALYSIS OR
ADDITIONAL INFORMATION MAY CHANGE THE CONTENT, COMMENTARY AND
CONCLUSIONS DETAILED. THIS DOCUMENT DOES NOT CONSTITUTE A DSD
CERTIFICATION OR FORMAL EVALUATION.

UNCLASSIFIED

UNCLASSIFIED

Executive Summary

DSD performed analysis on the redaction functionality provided in recent iterations of Adobe
Acrobat Pro. This functionality allows a user to remove sensitive content from documents prior to
dissemination. DSD performed this analysis to gain some assurance over the redaction functions due
to prior public incidents where seemingly redacted information was easily recoverable. Examination
of sample redacted documents indicated that when applied as suggested, the redaction function
in Acrobat successfully removed information. It was not possible to recover data which had been
redacted.

Scope

This document is not intended to be a complete analysis or evaluation of the portable document
format (PDF), its security features, or the security of Adobe’s products. It is also not a guide on
implementing the redaction function. For the purposes of this document, the following scenario was
considered:

e A user possesses a PDF file which they intend to disseminate. However, prior to
dissemination, they wish to redact sensitive information contained in the document.

e The user redacts the information using the function contained in Adobe Acrobat, following
the procedures suggested by Adobe.

e They save the redacted document as a new file and it is disseminated.

DSD analysed the new, redacted file in order to determine whether the redaction process was
successful or if it was possible for a user to view the sensitive information.

Simple PDF files were prepared as test samples using Acrobat Pro 10 and Microsoft Word 2010.
These documents contain a title and two lines of text, one of which is to be redacted. A number of
test cases were considered, representing the different means by which textual data can be stored
within a PDF. These cases were repeated using encrypted PDFs and files containing version histories
of past edits. Whilst not explicitly tested, the sanitization features of Acrobat are also briefly
discussed. A screenshot of one of the sample files is attached later in this document.

Adobe Acrobat Pro release 10.0.0 was used to conduct the redaction in all test cases.

Adobe’s recommendations for using the redaction tool can be found in Appendix 1 - reference 1. A
full description of the PDF specification and its history can also be found in references 2 and 3 of
Appendix 1.

Findings

Using DSD’s test cases, the redaction function worked as intended and it was not possible to retrieve
the sensitive information from the redacted document. Rather than simply “covering up” embedded
text or field data, Adobe’s redaction function removed it entirely. Similarly, when the process was
applied to embedded graphics the graphic data itself was altered rather than another graphic, such
as a black box, simply being placed on top of it. In cases where the test document contained multiple
instances of its data objects due to the use of incremental updates, the redaction function removed

UNCLASSIFIED

UNCLASSIFIED

the historical objects and they were not recoverable. When redactions were applied to a document,
a new document was created from scratch rather than a save being applied to the original. The
“remove hidden information” and “sanitize” functions within Acrobat also successfully removed
metadata and historical objects when applied to documents being edited, but not redacted.

Test Case Successful Redaction
Data stored as embedded text v
Data stored as embedded image v
PDF contains historical data v
Data stored in form field v
Data obscured by other objects v
PDF is encrypted 4

Test Document
The screenshot below shows the test document used to conduct the analysis:

[- test_document_original.pdf - Adobe Acrobat Pro Sand Fasctack ||| 5 [Ee)
File Edit View Window Help x
T create~ | (9 oE sez2LDBR «

1 I | w W} | =) & | n% 'I | H] Tools | Comment | Share

Test PDF

This text is not sensitive and can be disseminated.

This text is sensitive and must be redacted.

Figure 1 — Example of test document prepared.

UNCLASSIFIED

UNCLASSIFIED

Test Case 1 - Redaction of Embedded Text

PDF files store data as a series of referenced “objects”. The files are primarily text- based though
possess the ability to store data as compressed binary streams. Prior to redaction, a test document
storing the data as selectable text was pulled apart using the open-source tool pdf-parser, decoding
all embedded streams and viewed in its raw form:

./pdf-parser.py —f ——raw test_document_original.pdf

Other tools, such as origami, pdfminer or pypdf would achieve the same result.

Searching through the decoded file, it was determined that the text data was stored within Object
36. The relevant portion of the decoded data stream within this object is shown below:

BT

0g

/TTO0 1 TF

OTc OTwO Ts 100 Tz O Tr 18 0 O 18 267.469 705.691 Tm
[(Test)1(PDF)]TJ

ET

/LEP BMC

EMC

EMC

/Span <</MCID 1 >>BDC

BT

/TT1 1 TF

12 0 0 12 306 688.925 Tm
)T}

ET

/LEP BMC

EMC

EMC

/Span <</MCID 2 >>BDC

BT

/TT1 1 TF

12 0 0 12 108 674.525 Tm

(This text is not sensitive and can be disseminated.)Tj

ET

/LEP BMC

EMC

EMC

/Span <</MCID 3 >>BDC
BT

/TT1 1 TF

12 0 0 12 108 660.125 Tm
)T}

ET

/LEP BMC

UNCLASSIFIED

UNCLASSIFIED

EMC

EMC

/Span <</MCID 4 >>BDC
BT

/TT1 1 TF

12 0 0 12 108 645.725 Tm
(This text is sensitive and must be redacted.)Tj
ET

The highlighted portions above were the only instances within the file where the text was stored. It
should be noted that PDF files do not always store text as continuous plaintext strings (though this is
case in the examples to simplify the demonstration). For example, text can be stored as a series of
Unicode values represented in hex of octal notation, or assigned custom character mappings to
make the document compatible with other languages. Different pieces of text, which may appear
near each other when rendered, can be stored in separate objects. The location of data and objects
internally within a PDF does not impact how the data is displayed.

Using the function in Acrobat, the line of text “This text is sensitive and must be redacted” was
redacted. The new file was decoded and examined. It was determined the internal structure of the
file had changed and the embedded text was now stored as a data stream within Object 30. Again,
the relevant section of this decoded stream is displayed below:

BT

/Span <</MCID 0 >>BDC
0g

/TT0 1 TF

O Tc O Tw O Ts 100 Tz O Tr 18 0 O 18 267.469 705.691 Tm
[(Test)1(PDF)]TJ

EMC

/Span <</MCID 1 >>BDC
/TT1 1 TF

12 0 0 12 306 688.925 Tm
)T}

EMC

/Span <</MCID 2 >>BDC
-16.5 -1.2 Td

(This text is not sensitive and can be disseminated.)Tj
EMC

/Span <</MCID 3 >>BDC
0 -1.2 TD

)T}

EMC

ET

q

0g

1001108 72 cm
/1m0 Do

UNCLASSIFIED

UNCLASSIFIED

Q

q

0g
1001504 720 cm
/1m0 Do

As can be seen above, the redacted text no longer exists within the object. Searching through the
entire file, it was determined that legacy versions of the original object potentially containing the
redacted text were not present.

The redacted text did not exist within any of object present in the file.

UNCLASSIFIED

UNCLASSIFIED

Test Case 2 - Redaction of Embedded Graphics

For this test, data was represented as an embedded graphic where a printed document has been
scanned and exported to PDF without any optical character recognition (OCR). The tool pdfimages
was used on the test file, extracting all embedded graphics in portable pixel map (ppm) format:

pdfimages test_document_image.pdf images

As expected, this resulted in one graphic file being extracted. Additionally, the file was run through
pdf-parser to determine where within the file the graphic data was stored. In the test case, the
graphic data was stored as an encoded stream within Object 12 as shown below in the output
generated by the script. The entire file was subsequently decoded and searched. No other instances
of the data were identified.

Indirect Object: 12
3: 7,14,10
/Catalog 1: 8
/Metadata 2: 11, 1
/0bjStm 2: 2, 3
/Page 1: 9
/XObject 1: 12
/XRef 2: 13, 4

The file was opened in Acrobat and in this case, since the text itself was not selectable, a graphical
area was highlighted for redaction. Looking at the structure of the resulting file, only one embedded
graphic object was identified. This object was extracted using pdfimages and is shown below:

Test PDF

This text is not sensitive and can be disseminated.

Figure 2 — Image extracted from the redacted file

This demonstrates the raster data of the graphic itself had been altered to include the redaction. A
black annotation was not simply covering the original graphic object.

UNCLASSIFIED

UNCLASSIFIED

As in the first test case, the internal structure of the new file differed from the original and in this
instance, the graphic data was stored as Object 14. An exhaustive search through the file indicated
no historical instances of the original, unaltered object.

Test Case 3 - Redaction of a File Containing Historical Objects

The text in the original file was edited and re-saved several times in order to create a document
which possessed a number of historical objects containing the previous iterations of the data. The
figure below shows this document’s structure as displayed by pdfwalker, a part of the origami suite
of PDF tools.

* Revision 2 PDF Code
W "
* Revision 3 |[Multiple "revisions 36 0 obj
» Revision4 Jof data <<
¥ Revision 5 /structParents 7
¥ Body /LastModified 41 0 R
* MetadataStream /Matrix [1.0 0.0 0.0 1.0 0.0 0.0]
» page /PieceInfo 45 0 R
* FormXobject /Filter /FlateDecode

/Resources <<
/ProcSet [/PDF /Text /ImageB]
/X0Object <<
/Im0 38 0 R

* Stream Dictionary
* Stream
* ObjectStream

»
XRefStream e

Trailer /Font <<

¥ Revision 6 /C2_0 56 0 R

¥ Body /TTO 47 0 R
* MetadataStream PN T R e T v e ot o S R B B T o . g atey
» Page D 43 49 44 20 32 20 3E 3E 42 44 43 20 <</MCID 2 >>BDC
» FormXObject A 2F 43 32 5F 30 20 31 20 54 66 OA 31 .BT./C2_0 1 Tf.1
* Font 0 30 20 31 32 20 31 30 38 20 36 37 34 2 0 0 12 108 674
o 5 20 54 6D OA 3C 30 30 33 37 30 30 34 .525 Tm.<0037004

4 43 30 30 35 36 30 30 30 33 30 30 35 B004CO0560003005

* Stream 4 38 30 30 35 42 30 30 35 37 30 30 30 70048005B0057000
* Font 4 43 30 30 35 36 30 30 30 33 30 30 35 3004C00560003005
* Dictionary 5 32 30 30 35 37 30 30 30 33 30 30 35 1005200570003005
* FontDescriptor 4 38 30 30 35 31 30 30 35 36 30 30 34 6004800510056004
» Stream 5 37 30 30 34 43 30 30 35 39 30 30 34 C0057004C0059004
* Stream 0 33 30 30 34 34 30 30 35 31 30 30 34 8000300440051004

Figure 3 — List of objects within a file containing historical objects.

When redactions were applied to this document and saved, the new file did not contain any of the
historical objects present in the original; even if the “remove hidden information” option was not
run after the redaction was applied.

Header (version 1.7) 30 0 obj
¥ Revision 1] Origami artefact, <<
* Body not data /StructParents 7
Trailer /Matrix [1.0 0.0 0.0 1.0 0.0 0.0]
* Revision 2| Single instance of data [Filter /FlateDacode
¥ Body /Resources <<
» Stream /Procset [/PDF /Text /ImageB]
* Catalog Ixohject,;cu o
* Page o 9
* Stream /Font <<
/c2_0 44 0 R
* ImageXObject JTTO 46 0 R
* ObjectStream P
* Stream S
» Stream 1 OA 42 54 OA 2F 53 70 61 6E 20 3C 3C 2F 4D 43 gq
¥ Sireom 9 44 20 30 20 3E 3E 42 44 43 20 OA 30 20 67 OA I
o, F 54 54 30 20 31 20 54 66 OA 30 20 54 63 20 30 /°
i 0 20 54 72 20 31 38 20 30 20 30 20 31 38 20 32 o]
* ObjectSt
-obJ“:s:mm 6 37 2E 34 36 39 20 37 30 35 2E 36 39 31 20 54 6
¥ et taam D OA 5B 2B 54 65 73 74 20 29 31 28 50 44 46 20 m
Opisctiimym 9 5D 54 4A OA 45 4D 43 20 OA 2F 53 70 61 6E 20)]
* XRefStream C 3C 2F 4D 43 49 44 20 31 20 3E 3E 42 44 43 20 <+
Trailer A 2F 43 32 5F 30 20 31 20 54 66 OA 31 32 20 30 .,
0 30 20 31 32 20 33 30 36 20 36 38 38 2E 39 32 (

UNCLASSIFIED

UNCLASSIFIED

Figure 4 — List of objects within redacted file.

Test Case 4 - Redaction of Form Data
A test document was prepared where the text data was stored as content within a field, simulating
an interactive form.

When the internal structure of this document was examined, the field content was found to be in
two separate objects, one being a Form object and the other a being an object used for such things
as controlling a form’s appearance, referred to as a “widget” object.

H { 1.6;
eader (version 1.6) /Matrix [1.0 0.0 0.0 1.0 0.0 0.0]

¥ Revision 1 /Filter /FlateDecode
¥ Body /Resources <<
* Dictionary /Procset [/PDF /Text]
» XRefStream /Font <<
Trailer /Helv 47 0 R
¥ Revision 2 ==
¥ Body o
" chicen /Subtype /Form
» Catalog /Length 164
> Pag /BBox [O,q 0.0 273.423 22.0
%'EE‘FW"’ data stored in®Je<
» objectstreaml these two objects
* Stream [Binary data]
* FormXObject endstream
* ImageXObject

0000000000 2F 54 78 20 42 4D 43 20 OA 71 OA 31 20 31 20 32 /Tx BMC .g.1 1 2

 SNesam 0000000016 37 31 2E 34 32 32 37 20 32 30 20 72 65 OA 57 OA 71.4227 20 re.W.
» Gblectstresm 0000000032 6E OA 42 54 OA 2F 48 65 6C 76 20 31 32 20 54 66 n.BT./Helv 12 Tf
* Objectstream 0000000048 OA 30 20 67 OA 32 20 36 2E 35 34 38 20 54 64 OA .0 g.2 6.548 Td.
» Metadatastream 0000000064 28 54 68 69 73 20 29 20 54 6A OA 32 35 2E 39 38 (This) T§.25.98
» ObjectStream 0000000080 20 30 20 54 64 OA 28 74 65 78 74 20 29 20 54 6A 0 Td.(text) Tj
» ObjectStream 0000000096 OA 32 32 2E 36 34 34 20 30 20 54 64 OA 28 69 73 .22.644 0 Td. (is
» XRefstream 0000000112 20 29 20 54 6A OA 31 31 2E 39 38 38 20 30 20 54) T3.11.988 0 T

0000000128 64 OA 28 73 65 6E 73 69 74 69 76 65 20 29 20 54 d. (sensitive) T
0000000144 6A OA 34 39 2E 39 39 32 20 30 20 54 64 OA 28 61 3§.49.992 0 Td. (a
0000000160 6E 64 20 29 20 54 6A OA 32 33 2E 33 34 20 30 20 nd) Tj.23.34 0

0000000176 54 64 OA 28 6D 75 73 74 20 29 20 54 6A OA 32 39 Td. (must) Tj.29
0000000152 2E 33 31 36 20 30 20 54 64 OA 28 62 65 20 295 20 .316 0 7Td. (be)

0000000208 54 6A OA 31 36 2E 36 36 38 20 30 20 54 64 OA 28 T3.16.668 0 Td. (
0000000224 72 65 64 61 63 74 65 64 2E 29 20 54 6A OA 45 54 redacted.) Tj.ET
0000000240 OA 51 OA 45 4D 43 0OA -Q.EMC.

Trailer

Figure 5 — List of objects when data stored within form field.

Redaction was applied to the entire field content and the new file examined. Both instances of the
data had been removed and no remnants of the form data were discovered.

A second test was conducted with redaction applied to only part of the field content. In this
circumstance the entire field was still removed by Acrobat during the redaction process, including
content not marked for redaction.

Test Case 5 - Redaction of Obscured Content

Test case 1 was repeated; however a drawing was first placed over the text. This was done to
confirm that when an area of a page is marked for redaction, all content, not just the top layer is
removed.

The area containing the appropriate text was marked for redaction. The resulting file was examined
for the redacted text. The text data, as well as the drawing covering it, were not present in the file,
indicating that redaction can remove multiple layers of data.

UNCLASSIFIED 10

UNCLASSIFIED

Test Case 6 - Redaction of Encrypted PDF Files

Test cases were repeated using encrypted PDF files requiring a password to open. In these instances
the redaction results were the same as above. Additionally, the encryption was maintained in the
new file after the redaction function was run.

The “Remove Hidden Information” and “Sanitize” Features of Acrobat
These two functions scan a document for any objects that are not rendered when it is displayed.
They identify numerous items including, but not limited to: metadata, objects that are transparent
or completely covered by other objects, historical objects still present after edits, any un-referenced
data in the file, JavaScript, hyperlinks and file attachments. When applied, these functions remove
these items from the file.

A complete test of these functions is beyond the scope of this assessment; however, in the instances
when the functions were applied to test documents, they were successful in removing metadata
contained within the files.

It is good practice for users to enact these features when conducting redactions in order to ensure
unnecessary information is not still present. When redactions are applied, Acrobat should be set to
prompt the user to run the “remove hidden information” function.

It is also recommended users run these features after conducting edits on a PDF to ensure that
information contained in previous iterations of the file is thoroughly removed and not accessible
(see example 2 of poor redaction techniques below).

UNCLASSIFIED

11

UNCLASSIFIED

Examples of Poor Redaction Techniques

The examples below show common, easy to circumvent, ways users have chosen to redact
information. Whilst it may seem obvious why these techniques do not work, there have been some
very public incidents involving improperly redacted documents (Appendix 1 - references 4 and 5).

Example 1 - Drawing a Box over Sensitive Text or Images

It is quite common for users to redact information in a PDF file by simply drawing a coloured box
over the sensitive data using the PDF editor available to them. Whilst the sensitive data is obscured
when the document is displayed, it is still present within the internal structure of the file.

Using pdfimages, it is a trivial matter of extracting images from within a PDF file. Since the addition of
a coloured box does not alter the original embedded image, when pdfimages is run on the “redacted”
document, the original, pre-redacted graphic is retrieved.

In the similar case of a box drawn over embedded text, the obscured text is easily recovered by
extracting the contents of the objects stored within the file using one of the many tools available, or

IM

by simply “selecting all” and pasting the text somewhere else.

Example 2 - Simple Deletion of Text

It would make sense to a user that deleting a line of text from a document would be an acceptable
method of removing the data. However, the PDF specification allows historical objects to be stored
within the file after they have been edited. If an object is altered, a new version of that object is
created. The original object is still present in the file, but the new object is listed in the file’s
reference table and thus rendered when a user opens the document. This is a process known as
“incremental updating”. The original object can be recovered by examining the internals of the file.

This problem can be circumvented by running the “remove hidden features” function over the
document after editing is complete.

Example 3 - Changing Text/Background Colour to Obscure Content

There have been instances where users have redacted information by changing the text background
to match the text colour. This is the simple to circumvent; a user can simply highlight the obscured
text with their cursor to make it visible. The examples listed in references 4 and 5 both used this
“redaction method”.

It should be reiterated that regardless of the software used, for a redaction method to be
successful it needs to remove the data, not simply obscure it.

UNCLASSIFIED

12

UNCLASSIFIED

Appendix 1

References

1.

Acrobat X Pro / Remove and Redact Information:
http://www.adobe.com/products/acrobatpro/pdf-redaction.html

2. The PDF Specification and Reference 1.7: http://www.adobe.com/devnet/pdf/

3. History of the PDF: http://www.adobe.com/pdf/about/history/

4. How NOT to Redact a PDF — Nuclear Submarine Secrets Spilled:
http://nakedsecurity.sophos.com/2011/04/18/how-not-to-redact-a-pdf-nuclear-submarine-
secrets-spilled/

5. AT&T Leaks Sensitive Info in NSA Suit: http://news.cnet.com/2100-1028 3-6077353.html

Tools Used for Analysis

Tools used to conduct the analysis are listed below. They are all freely available online.

pdfminer — 20110515 — http://pypi.python.org/pypi/pdfminer
Python scripts for extracting information from PDFs.

pdf-parser — 0.3.7 — http://didierstevens.com

Python script for examining the internal structure and content of PDFs.

Origami — 1.0.4 — http://www.security-labs.org

Ruby based set of tools for extracting data from PDFs.

pdftk — 1.44 — http://www.pdftk.com
A package of small tools for extracting information from PDFs.

pyPDF —1.12 — http://pybrary.net/pyPDF
Python library with functions for creating and extracting data from PDFs.

pdfimages — 3.00 — http://poppler.freedesktop.org

Image extraction tool derived from xPDF.

UNCLASSIFIED

13

	Cover_Adobe_Redaction_Oct_11.pdf
	Adobe Acrobat Redaction Capability
	Cover_Adobe_Redaction_Oct_11
	Adobe Acrobat Redaction Capability.pdf

