
Hedgehog in the Fog: Creating and
Detecting IPv6 Transition

Mechanism-Based Information Exfiltration
Covert Channels

Bernhards Blumbergs, Mauno Pihelgas, Markus Kont, Olaf M. Maennel
and Risto Vaarandi

c©Springer, 2016. This is the authors original extended version of the work.
It is posted here by permission of Springer for your personal use. Not
for redistribution. The definitive version was published in Proceedings of
the 21st Nordic Conference (NordSec 2016), ISBN: 978-3-319-47560-8,
DOI: 10.1007/978-3-319-47560-8, https://link.springer.com/book/10.1007%
2F978-3-319-47560-8

https://link.springer.com/book/10.1007%2F978-3-319-47560-8
https://link.springer.com/book/10.1007%2F978-3-319-47560-8


Hedgehog in the Fog: Creating and Detecting IPv6
Transition Mechanism-Based Information

Exfiltration Covert Channels
(Author copy, December 20, 2016)

Bernhards Blumbergs∗, Mauno Pihelgas∗, Markus Kont∗, Olaf M. Maennel† and Risto Vaarandi†
∗NATO Cooperative Cyber Defence Centre of Excellence

Email: name.surname[a]ccdcoe.org
†Tallinn University of Technology

Email: name.surname[a]ttu.ee

Abstract—The Internet Protocol Version 6 (IPv6) transition
opens a wide scope for potential attack vectors. Tunnel-based
IPv6 transition mechanisms could allow the set-up of egress
communication channels over an IPv4-only or dual-stack network
while evading detection by a network intrusion detection system
(NIDS). Increased usage of IPv6 in attacks results in long-term
persistence, sensitive information exfiltration, or system remote
control. Effective tools are required for the execution of security
operations for assessment of possible attack vectors related to
IPv6 security.

In this paper, we review relevant transition technologies,
describe two newly-developed IPv6 transition mechanism-based
proof-of-concept tools for the establishment of covert information
exfiltration channels, and compare their performance against
common tunneling mechanisms. We evaluated commonly used
exfiltration tools in an automated and virtualized environment,
and assessed covert channel detection methods in the context of
insider threat.

An analysis of the generated test cases confirms that IPv6
and various evasion techniques pose a difficult task for network
security monitoring. While detection of various transition mech-
anisms is relatively straightforward, other evasion methods prove
more challenging. Additionally, some solutions do not yet fully
support IPv6.

Index Terms—Computer network operations, Evasion tech-
niques, Information exfiltration, IPv6 security, IPv6 transition,
Covert channels, Monitoring, Red teaming

I. INTRODUCTION

In this work we explore possible uses of IPv6 transition
technologies for creation of covert channels over dual-stack
and native IPv4 connectivity to exfiltrate information for red
teaming [1] purposes. An analysis in Section II shows that
this approach is novel and no implementations of such newly-
developed tools have been identified previously.

The main contributions of this paper are:
1) two novel approaches for covert channel creation with

IPv6 transition mechanisms;
2) development of proof-of-concept tools that implement

the proposed methods (nc64 and tun64);
3) commonly-used protocol tunneling and developed proof-

of-concept tool detection comparison table (Appendix
A); and

4) a reproducible virtual lab environment providing detec-
tion results using open-source network security monitor-
ing tools.

The Internet is in a period of tremendous growth, currently
evolving toward the Internet of Anything (IoA). Early 2011
saw depletion of the pool of Internet Protocol Version 4
(IPv4) addresses available from the Internet Assigned Num-
bers Authority (IANA), an expansion which was anticipated
and preceded by IPv6 specification [2] in 1998. The more
widely-deployed IPv4 standard and IPv6 are incompatible, and
they can communicate only via transition mechanisms and
technologies [3] [4]. This introduces an additional layer of
complexity and inherent security concerns for the transition
and co-existence period [5]. Approaches for the IPv6 transition
include dual-stack, address translation, and configured and
dynamic tunneling [6], as well as other common encapsulation
and packet transmission mechanisms, such as generic rout-
ing encapsulation (GRE) and multi-protocol label switching
(MPLS).

The adoption of IPv6, and availability per the core backbone
of the Internet infrastructure and edge networks, varies [7].
It has been observed that ”[...] IPv6 is largely deployed
at the core but lags in edge networks [...]” [8]. Alongside
IPv6 launch campaigns (e.g. World IPv6 Day in 2011, and
World IPv6 Launch in 2012), the autonomous systems (AS)
announcing IPv6 prefix are rapidly increasing1 2. Even though
IPv6 usage is increasing with the yearly rate of over 400%,
it still makes up around 1% of measured Internet packets [8],
and IPv6 accessible content on the Internet is a minority [4]
[9] [10]. In this context, connecting to the IPv6 Internet while
maintaining scalability and minimal overall complexity would
require edge networks to depend on transition mechanisms
[4]. IPv6 deployment is based on Internet Service Provider
(ISP) and Internet Content Provider (ICP) technical readi-
ness, implementation knowledge, commercial considerations
and consumer demands [8], possibly meaning that local area

1IPv6 Enabled Networks, RIPE NCC. http://v6asns.ripe.net/v/6 (Accessed
15/04/2016)

2IPv6 CIDR Report. http://www.cidr-report.org/v6/as2.0/ (Accessed
15/04/2016)

2

http://v6asns.ripe.net/v/6
http://www.cidr-report.org/v6/as2.0/


networks (LAN) will continue to use primary IPv4 for an
undefined period.

IPv6 protocol implementations and security solutions are
relatively new, already supported by default by modern oper-
ating systems, and have not yet reached the level of acceptable
quality and maturity [4] [11]. In many cases, system engineers
are not fully aware of them [12]. This lack of expertise
and technological maturity result in IPv6 being considered
in most cases as a “back-door” protocol, allowing bypass of
network access controls, evasion of security mechanisms, and
circumvention of security policies [13] [14]. This is important
particularly when an attack originates from inside the network,
as network security devices are commonly configured and
placed on the perimeter under the assumption that intruders
will always come from outside [15], making insider attacks
more severe, damaging, and harder to detect [16].

In the age of advanced high-profile targeted attacks [17]
[18] executed by sophisticated and resourceful adversaries,
IPv6 is seen as an additional vector for persistent and covert
attacks. Such threats include malware [19] [11] and advanced
persistent threat (APT) actors [20]. Advanced threats typically
pursue cyber-espionage campaigns for collection and exfil-
tration of sensitive information, gaining control over target
network systems, and executing long-term persistence or fast-
paced “hit-and-run” operations. The length of the transition
period cannot be estimated, and it can be assumed that even
once the entire Internet is native IPv6, there will still be
systems running deprecated IPv6 functionality specifications,
heritage transition mechanisms, or even IPv4 which already at
that time could be potentially used as a “back-door” protocol.

Our research shows that current Network Intrusion De-
tection System (NIDS) solutions have serious drawbacks for
handling IPv6 traffic. Addressing these shortcomings would
require redevelopment of the principles how NIDSs reassem-
ble packet streams, and correlation of distinct sessions. The
described IPv6 transition-based methods (i.e. nc64 and tun64)
use both IP version implementations in the same protocol
stack. Attribution of these connections to a covert channel is
therefore difficult. By comparison, common protocol tunneling
approaches (e.g. SSH, DNS) would be easier to detect by
an automated solution or human analyst since their behavior
pattern is well known and understood.

In this paper, Section II reviews background and related
work on IPv6 based network security, device evasion mech-
anisms, and covert channels; Section III describes common
protocol tunneling approaches and newly-developed attack tool
implementation and design; Section IV describes the attack
scenario, simulation environment, and generated test cases;
Section V discusses experiment execution results (presented in
Table II), summarized discussions with commercial intrusion
detection and data leakage prevention (DLP) system ven-
dors, and additionally gives recommendations for such attack
detection and mitigation possibilities; and Section VI offers
conclusions.

Throughout, we adhere to IETF RFC2119 terminology,
being aware of inherent discrepancies and ambiguities in

this terminology across technical research papers and IETF
documents [21].

II. BACKGROUND AND RELATED PREVIOUS WORK

The aim for IPv6 was to to evolve and eliminate the
technical drawbacks and limitations of the IPv4 standard.
However, IPv6 reintroduced almost the same security issues
and, moreover, added new security concerns and vulnerabili-
ties [22]. Various publications on IPv6 security acknowledge
at least the following known security issues:

1) extension header-based attacks (e.g. extension header
chaining, large extension headers, unused headers, dep-
recated headers) [23] [24] [25];

2) fragmentation (e.g. atomic fragments, overlapping frag-
ments) [11] [24] [25] [14];

3) ICMPv6 security issues (e.g. Neighbor Discovery,
Router Advertisements, multicast listen discovery) [26]
[23] [24] [27] [14];

4) stateless automatic address configuration (SLAAC) [26]
[28] [29] [30] [14];

5) unauthorized IPv6 clients [26];
6) tunneling (e.g. 6over4, ISATAP, IPSec tunneling) [11]

[23] [31] [27] [29] [32] [14];
7) transition mechanisms (e.g. tunneling, translation and

dual-stack) [11] [23] [28] [22] [24] [31] [29] [14];
8) address space size (e.g. address allocations per subnet

and their uniqueness) [23] [28] [22] [24] [30];
9) privacy concerns (e.g. EUI-64 addressing) [26] [14];

10) mobile IPv6 [24];
11) IPv6 preference over IPv4 (e.g. on dual-stack hosts)

[23];
12) service misconfiguration (e.g. exposing internal hosts

globally) [12] [25];
13) multiple IPv6 addresses per single host [12];
14) inconsistent IPv6 support [29] [31] [27]; and
15) protocol specification implementation ambiguities [23].
Current IPv6 attack tools, such as the THC-IPv6 [13], SI6-

IPv63, Topera4, and Chiron5 toolkits, include the majority
of techniques for abuse of IPv6 vulnerabilities, and can be
utilized for network security assessment and IPv6 implemen-
tation verification.

Within the scope of this paper, a covert channel is under-
stood as “a network connection that disguises its byte stream
as normal traffic” [33]. Protocol steganography [34] for hiding
and side-channeling data in unused fields or encoding data in
existing field values can be considered a valid technique for
covert information exfiltration. However, for newly-developed
tool implementations described in this paper, exfiltrated data
is directly stored in the protocol payload. This being done in
order to test and verify the developed techniques in principle
without using additional obfuscation approaches, which could

3SI6 Networks’ IPv6 Toolkit. http://www.si6networks.com/tools/
ipv6toolkit/ (Accessed 10/11/2015)

4Topera IPv6 analysis tool: the other side. http://toperaproject.github.io/
topera/ (Accessed 10/11/2015)

5Chiron. http://www.secfu.net/tools-scripts/ (Accessed 10/11/2015)

3

http://www.si6networks.com/tools/ipv6toolkit/
http://www.si6networks.com/tools/ipv6toolkit/
http://toperaproject.github.io/topera/
http://toperaproject.github.io/topera/
http://www.secfu.net/tools-scripts/


be implemented at later stages. Mileva et al. offer an up-
to-date, comprehensive survey of the covert channels in the
TCP/IP protocol stack [34] classified by the affected layer
and protocol, assessing advantages, disadvantages, and defense
mechanisms, if they exist.

A proof-of-concept tool, v00d00N3t, for establishment of
covert channels over ICMPv6 [35] has demonstrated the
potential for such approach, though it has not been released
publicly. Techniques for evading NIDS based on mobile IPv6
implementations reveal that it is possible to trick NIDS using
dynamically-changing communication channels [36]. Also, it
could be viable to create a covert channel by hiding infor-
mation within IPv6 and its extension headers [37]. Network
intrusion detection system (NIDS) and firewall evasions based
on IPv6 packet fragmentation and extension header chaining
attacks, have been acknowledged [5] [38] [13]. Although
current Requests for Comments (RFCs) have updated the
processing of IPv6 atomic fragments [39], discarding overlap-
ping fragments [40] and enforcing security requirements for
extension headers [41] [30], these attacks will remain possible
in the years ahead as vendors and developers sometimes
fail to follow the RFC requirements or implement their own
interpretation of them. General approaches for NIDS evasions
have been described and analyzed [42] [43] [44] [45], with the
basic principles behind evasions based on the entire TCP/IP
protocol stack. Advanced evasion techniques (AETs) involve
creating combinations of multiple atomic evasion techniques,
potentially allowing evasion of detection by the majority of
NIDS solutions [46]. Evasions are possible due to NIDS
design, implementation and configuration specifics, and low
network latency requirements [11]. This is partially related
to a lack of accepted NIDS standards, although there have
been some standardization and community-based attempts
to establish common frameworks by the Defense Advanced
Research Projects Agency (DARPA) (the Common Intrusion
Detection Framework, or CIDF) and Internet Engineering Task
Force (IETF) (the Intrusion Detection Working Group).

Existing approaches and technologies consider native IPv6
network implementation and connectivity, and do not take
into account possible methods for network security device
evasions and covert channel establishment over IPv6 transition
mechanisms, in order to reach the command and control (CnC)
servers over IPv4 only or dual-stack Internet connectivity.
Moreover, to our knowledge no publicly available tools di-
rectly implement transition technology-based attacks. Here we
address this gap and advance beyond previous work.

III. COVERT CHANNEL IMPLEMENTATIONS

A. Protocol tunneling

Protocol tunneling and IPv6 tunneling-based transition
mechanisms pose a major security risk, as they allow bypass-
ing of improperly-configured or IPv4-only network security
devices [27] [22] [26] [14] [32]. IPv6 tunnel-based transition
mechanisms, as well as general tunneling approaches (e.g.
HTTP, SSH, DNS, ICMP, IPsec), can bypass network pro-
tection mechanisms. However, IPv6 tunnels simply add to the

heap of possible tunneling mechanisms, leading to unmanaged
and insecure IPv6 connections [27]. Moreover, dual-stack
hosts and Internet browsers favor IPv6 over IPv4 [7], which
in some cases raises security concerns as this may not be
anticipated by network security personnel. Various protocol
tunneling approaches can be used to set up a covert channel by
encapsulating exfiltrated information in networking protocols,
such as DNS [33], HTTP(S) [33], SSH [47] [48] [49] [50],
ICMP [33], RTP [51], FTP [51], SSH over HTTP [52], and
peer-to-peer [33].

Technologies such as VPN, TOR, i2p and related peer-to-
peer mechanisms are not considered here, as they rely on ded-
icated sets of protocols, are highly specific, and infrastructure
dependent. Their presence in a network can be detected (e.g.
TOR exit nodes, i2p router) and might not be allowed by the
network egress firewall policy, unless they are encapsulated in
other protocols or otherwise tunneled.

Covert channels based on DNS, HTTP(S), SSH, and ICMP
implementations are acknowledged here as the most common
approaches for eluding network detection mechanisms, due to
both their frequent use and standard network policy, which
allows outbound protocols and ports for user requirements
and remote network administration needs. The following ap-
proaches and their tool implementations have been selected
for their availability in distributions for network security
penetration testing (e.g. Kali Linux6):

1) DNS tunneling (iodine7, dnscat28);
2) HTTP tunneling (httptunnel9);
3) SSH tunneling (OpenSSH client and server10, sshuttle11,

PuTTY12);
4) ICMP tunneling (ptunnel13); and
5) Netcat tunneling (Ncat14).
Although it is possible to manually script missing tool

implementations (e.g. HTTP(S) or DNS tunneling over IPv6),
we consider mature and publicly available tools herein.

B. Proof-of-concept nc64 tool

We have developed a proof-of-concept tool, nc6415, for the
creation of information exfiltration channel over dual-stack
networks using sequential IPv4 and IPv6 sessions. The tool’s
source code is publicly available under MIT license16.

Signature-based IDSs reassemble packets and data flows,
in order to conduct inspection against a known signature

6Kali Linux 2.0. https://www.kali.org/ (Accessed 20/11/2015)
7Iodine. http://code.kryo.se/iodine/ (Accessed 20/11/2015)
8dnscat2. https://github.com/iagox86/dnscat2 (Accessed 20/11/2015)
9Arch Linux httptunnel repository. https://www.archlinux.org/packages/

?name=httptunnel (Accessed 20/11/2015)
10OpenSSH. http://www.openssh.com/ (Accessed 20/11/2015)
11sshuttle. https://github.com/apenwarr/sshuttle (Accessed 20/11/2015)
12PuTTY: A Free Telnet/SSH Client. http://www.chiark.greenend.org.uk/

∼sgtatham/putty/ (Accessed 20/11/2015)
13Ping Tunnel. http://www.cs.uit.no/∼daniels/PingTunnel/ (Accessed

20/11/2015)
14Nmap Ncat. https://nmap.org/ncat/ (Accessed 20/11/2015)
15nc64 https://github.com/lockout/nc64 (Accessed 12/03/2016)
16Open Source Initiative. The MIT License (MIT). https://opensource.org/

licenses/MIT (Accessed 16/05/2016)

4

https://www.kali.org/
http://code.kryo.se/iodine/
https://github.com/iagox86/dnscat2
https://www.archlinux.org/packages/?name=httptunnel
https://www.archlinux.org/packages/?name=httptunnel
http://www.openssh.com/
https://github.com/apenwarr/sshuttle
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.cs.uit.no/~daniels/PingTunnel/
https://nmap.org/ncat/
https://github.com/lockout/nc64
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT


database. This is done on per-session basis (e.g. a TCP ses-
sion). If the data is fragmented across multiple sessions, then
the IDS cannot retrieve the full information to evaluate whether
the traffic is malicious. In such scenario NIDS has to be
context aware in order to be able to correlate and reconstruct
the original stream from multiple sequential ones. This is very
challenging due to performance considerations. While any set
of networking protocols could be used for a sequential session
creation, the security, transition, and immaturity of IPv6 makes
it a preferred choice. When considering NIDS separate session
correlation possibilities, IP protocol switching would make it
harder since destination IPv4 and IPv6 addresses are different.
In a dual-stack operating system, IPv4 and IPv6 protocols are
implemented side by side, thus adding a layer of separation
between the two standards and making it more difficult for
IDSs to reassemble data. Additionally, a single host can have
multiple global IPv6 addresses, making the correlation to a
single host even harder.

Having IPv4 and IPv6 connections to the same remote host
can be regarded as normal, as the resources on the destination
server could be accessible over both IPv4 and IPv6. For
example, a website might serve its main content over IPv6
and third-party content, such as banners, over IPv4, or vice-
versa. Additionally, a single host can have multiple global
IPv6 addresses, making the correlation to a single host harder,
unless a single reverse DNS record exists for those addresses.

To exfiltrate data from the source host to a destination CnC
server over sequential IPv4 and IPv6 sessions, the data must
be split into smaller chunks in compliance with the dual-
stack network MTU of 1500B. However, chunk size can be
varied to achieve coherent information exfiltration in relation
to specifics of the network and data. Alternation between IPv4
and IPv6 per session has to be controlled to minimize the
amount of information that is sent over a single IP protocol in
successive sessions (e.g. not allowing three or more sequential
IPv4 sessions). This control would avoid partial reassembly
and deny successful payload inspection by NIDS. Therefore,
in our implementation, the default threshold is set to three
successive same IP version sessions, with overall probability
of IP version selection of 0.5.

A CnC server has both IPv4 and IPv6 addresses on which it
listens for incoming connections. Once the connection is estab-
lished, the listener service receives sessions and reassembles
data in sequence of reception (Figure 1). This can be hard
to accomplish if a stateless transport layer protocol is being
used (i.e. UDP) or data chunk size exceeds the maximum path
MTU (e.g. causing IPv4 packet fragmentation).

Another plausible option would be to establish multiple CnC
servers and have each session redirected to a different one via
a single IP version. However, such an approach would be less
scalable, require more server management overhead, and make
the data reassembly less efficient and reliable.

Our proof-of-concept tool, nc64, is written in Python ver-
sion 3 using standard libraries. It implements the aforemen-
tioned principles, and additionally:

Fig. 1. nc64 sequential IPv4/6 information exfiltration

1) provides both the listener server and client part in one
Python module;

2) accepts user-specified data from a standard input, which
provides flexibility and freedom of usage;

3) requires both IPv4 and IPv6 addresses for the destination
CnC listener, and can have a list of IPv6 addresses
in case the CnC server has multiple IPv6 addresses
configured;

4) supports UDP and TCP transport layer protocols, as
these are the main ones used in computer networks;

5) enables the destination port to be freely selected to
comply with firewall egress rules and match the most
common outbound protocol ports (e.g. HTTP(S), DNS),
and also allows for setting and randomizing of the source
port for UDP-based communications;

6) provides payload Base64 encoding for binary data trans-
mission, and to some degree can be treated as obfusca-
tion if the IDS does not support encoding detection and
decoding. It has to be noted that Base64-encoded traffic
might reveal the exfiltrated data in the overall traffic
since it would stand out, which would also apply when
using payload encryption;

7) allows for the setting and randomizing of timing inter-
vals between sequential sessions for an additional layer
of covertness and to mitigate possible timing pattern
prediction and detection by NIDS;

8) implements control over how many sequential sessions
of the same protocol can be tolerated before forcing a
switch to the other protocol, ensuring that small files are
sent over both IP protocols; and

9) supports additional debugging features, exfiltrated data
hash calculation, and transmission statistics.

Future improvements to the nc64 tool should implement
additional control mechanisms, such as codes for identifying
the exfiltrated block sequence number for correct reassembly
and verification; variable payload block size specification and
synchronization; legitimate traffic emulation (e.g. HTTP GET
requests for HTTP traffic, SSL handshakes and certificates for
HTTPS and SSH traffic); payload encryption; and transport
layer protocol switching.

5



C. Proof-of-concept tun64 tool

We have developed a second proof-of-concept tool, tun6417,
which exfiltrates information by abusing tunneling-based IPv6
transition mechanism capabilities over the IPv4-only computer
network. The tool’s source code is publicly available under
MIT license.

Most tunneling-based IPv6 transition mechanisms rely on
IPv4 as a link layer by using 6in4 encapsulation [6], whereby
an IPv6 packet is encapsulated in IPv4 and the protocol
number is set to decimal value 41 (the IANA-assigned payload
type number for IPv6). In 2013, 6in4-encapsulated traffic was
estimated to make 90% of IPv6-tunneled traffic [8]. Besides
6in4 encapsulation, we also acknowledge GRE (protocol-47)
[53] as an applicable encapsulation mechanism for 6in4-in-
GRE double encapsulation. When 6in4 (protocol-41) encap-
sulation is used, duplex connectivity might not be possible
if the network relies on strict NAT, and therefore stateless
connections may be used over UDP instead of TCP or SCTP.
Techniques for NAT hole punching [54] or autonomous NAT
traversal [55] could potentially traverse NAT devices. How-
ever, for the attack scenario considered in this paper, a one-
way communication channel for information exfiltration to the
CnC server is sufficient, making UDP the preferred transport
layer protocol [10].

Generic packet tunneling in IPv6 is described in RFC2473
[56], an overview and comparison of tunneling mechanisms
are provided in RFC7059 [57], and security concerns for IP
tunneling are reviewed in RFC6169 [58]. RFC4213 [6] de-
fines two tunneling mechanisms: configured (i.e. static), with
both tunnel endpoint IPv4 addresses predefined, and dynamic
(i.e. automatic), whereby the tunnel source and destination
IPv4 addresses are derived from IPv6 addresses. Based on
specification, these can be divided into router-to-router, host-
to-router, and router-to-host transition mechanisms [59] [14].
These include transition mechanisms such as: 6to4 automatic
tunnel [60] (with anycast 6to4 relay routers deprecated by
RFC7526 [61]), 6rd configured tunnel [62] [63], Softwire
Mesh (RFC5565), 6over4 configured tunnel [64], ISATAP
automatic tunnel [65] [57], Teredo automatic tunnel [66], SIT
[67], and AYIYA (Anything-in-Anything) [68]. Additionally,
tunnel brokers [69] (e.g. Hurricane Electric, SIXXS) provide
IPv6 Internet access to hosts in the IPv4 Internet.

Most of the transition techniques cannot solve transition
problems and hence are not appropriate for real-world im-
plementation and widespread deployment [4]. Tunnel-based
transition approaches are considered deprecated by the IETF,
but nevertheless, some of these technologies continue to be
supported by modern operating systems and ISPs.

The 6over4, ISATAP (figure 2), and 6to4 (figure 3) transition
mechanisms were selected for implementation in our proof-
of-concept tool for tunneling-based information exfiltration.
Selection of these mechanisms was based upon the tunnel
establishment from the target host or network, their support
by either operating systems or network infrastructure devices

17tun64 https://github.com/lockout/tun64 (Accessed 12/03/2016)

Fig. 2. 6over4 and ISATAP tunnel emulation

Fig. 3. 6to4 tunnel emulation

[57], and being independent of transition mechanisms imple-
mented by an upstream ISP (e.g. 6rd).

Our proof-of-concept tool, tun64, is written in Python
version 2 using the Scapy library18. It implements the afore-
mentioned principles and additionally:

1) provides only the client part, thus relying on standard
packet capture tools for reception and reassembly (e.g.
tcpdump, Wireshark, tshark);

2) supports TCP, UDP, and SCTP as transport layer proto-
cols;

3) emulates 6over4, 6to4, and ISATAP tunneling by assign-
ing source and destination IPv6 addresses according to
the transition protocol specification;

4) enables usage of 6to4 anycast relay routers if the tool is
being tested in real Internet conditions, although in our
simulated network, 6to4 relay routers or agents are not
implemented;

5) allows additional GRE encapsulation to create a 6in4-
in-GRE double encapsulated packet, which may allow
obfuscation if the NIDS is not performing a full packet
decapsulation and analysis;

6) gives an option to freely specify source and destination
ports, in order to comply with firewall egress rules; and

7) supports sending a single message instead of files or
standard input, a functionality designed with proof-of-
concept approach in mind.

When observing tun64 operations by an advanced packet-

18Scapy project. http://www.secdev.org/projects/scapy/ (Accessed
10/11/2015)

6

https://github.com/lockout/tun64
http://www.secdev.org/projects/scapy/


capture tool, such as Wireshark19, the traffic is represented as
IPv6 or IPv6-GRE rather than IPv4-based 6in4 encapsulated
traffic due to how Wireshark uses its sophisticated display
filters and packet decoders. In some cases this might give an
advantage to the attackers, as network monitoring personnel
might misinterpret the actual traffic relying on the sophisti-
cated capabilities of the packet capture tool.

IV. TESTING ENVIRONMENT AND TEST DESCRIPTION

A. Attack scenario

Our testing environment and experiments are designed
according to the following scenario. The attack target is
a small- to medium-sized research organization (up to 100
network nodes). Research organization assumes it is running
an IPv4-only network, even though all the network hosts are
dual-stack and their ISP just recently started to provide also
IPv6 connectivity. Network administrators have implemented
IPv4 security policies and only the following most common
egress ports and services are allowed through the firewall:
DNS (udp/53, tcp/53), HTTP (tcp/80), HTTPS (tcp/443), SSH
(tcp/22), and ICMP (echo). All network hosts can establish a
direct connection to the Internet without proxies or any other
connection handlers. This organization was recently contracted
by government to conduct advanced technological research
and therefore has sensitive (i.e. not restricted or confidential)
information processed and stored on the network hosts and
servers.

The government hired a red team to perform a technical
security test on the research organization in order to assess
the possibilities for exfiltrating information and gaining infras-
tructure control. A red team, assuming the role of reasonably
sophisticated attacker, has the goal of retrieving sensitive
information related to recent advanced research projects or
gaining unhindered access to the network services that store
and process such information. For this purpose, the red team
has already gained a persistent foothold within the computer
network of the target organization by fully compromising
at least one network host (e.g. a workstation, internal or
edge server, or core router) via network infrastructure device
targeting, client-side attacks, pivoting, and lateral movement.
The tools for information exfiltration are deployed on this
compromised host, which serves as the source node. The red
team has a dual-stack CnC server deployed on the Internet
under its full control, and this serves as the destination node.
Since the team is interested in exfiltrating information, it might
fall-back to a unidirectional communication channel if duplex
connectivity cannot be established or is not desired due to
operational requirements.

The red team has a selection of tools available at its disposal
for the establishment of a covert information exfiltration
channel, as described in Section III. Although the red team
intends to perform data exfiltration over a long period of time,
a requirement for immediate data extraction can be met if

19Wireshark network protocol analyzer. https://www.wireshark.org/ (Ac-
cessed 10/11/2015)

Fig. 4. Testing environment network map

network security devices would become able to detect the
covert channel.

B. Testing environment

To ensure reproducibility of the testbed, we created sev-
eral bash20 scripts that leverage the Vagrant21 environment
automation tool. The scripts are publicly available in a GitHub
repository22. A network map of the virtual testing environment
is presented in Figure 4.

The host and CnC devices were built on 32-bit Kali
Linux 2.0, which comes bundled with several tunneling tools.
Router1 served as the gateway for the target organization, and
Router2 as an ISP node in the simulated Internet (SINET).
Both routers were also built as authoritative DNS servers
to facilitate usage of the Iodine tool, which was explicitly
configured to query them during the tests. Two monitoring
machines were built to provide detection capability. The first
node was connected with a tap to the network link between
the routers and all packets were copied to its monitoring
interface. Second node was created to avoid conflicts between
monitoring tools, and was therefore not used for capture.

In order to create identical testing conditions, we decided
to store a packet capture (PCAP) file for each combination
of the exfiltration tool, destination port number, transport
layer protocol, and IP version. Additionally, several distinct
operation modes were tested for the nc64 (e.g. both plain-
text and base64 encoded payload) and tun64 (e.g. ISATAP,
6to4, and 6over4 tunneling mechanism emulation) tools, as
these significantly impact the nature of the network traffic.
Overall, 126 packet capture files were generated to be used as
test cases. In the next phase we used the same monitoring
nodes to run a selection of popular detection tools which
would analyze these PCAP files, produce connection logs, and
possibly generate alerts for suspicious activity.

We considered a number of open-source monitoring tools
that are often used for network security analysis. These include

20GNU Bourne-Again SHell. https://www.gnu.org/software/bash/ (Ac-
cessed 07/12/2015)

21Vagrant. https://www.vagrantup.com/ (Accessed 07/12/2015)
22Automated virtual testing environment. https://github.com/markuskont/

exfil-testbench (Accessed 07/12/2015)

7

https://www.wireshark.org/
https://www.gnu.org/software/bash/
https://www.vagrantup.com/
https://github.com/markuskont/exfil-testbench
https://github.com/markuskont/exfil-testbench


the signature-based NIDSs Snort23 and Suricata24, as well as
the network traffic analyzers Bro25 and Moloch26. For Suricata,
we used the Emerging Threats (ET) ruleset, while for Snort
we experimented with rulesets from both SourceFire (SF) and
ET signature providers.

In our tests, the data exfiltrated from the host system
comprise the highly sensitive /etc/shadow file and the root
user’s private SSH cryptographic keys. Both of which could
be used for gaining unauthorized access to potentially many
other systems in the organization.

V. EXPERIMENT EXECUTION AND DISCUSSION OF
RESULTS

The results of the experiments are summarised in Table I.
We also present the comprehensive results in an extensive table
(see Table II) in Appendix A. Each row in Table II describes
a single attack, while the columns represent a detection tool
that was used to attempt its detection.

TABLE I
SUMMARISED RESULTS OF THE EXPERIMENTS

Type # %
Positive matches 122 19.4%
Partial matches 92 14.6%
Potential visual matches 117 18.6%
Failed detection 299 47.4%
Total test iterations 630 100%

In our results, we distinguished four potential outcomes for
a test:

1) a positive match (denoted by letter Y and a green cell
in table II) was clearly identified as malicious activity
with appropriate alerts;

2) a partial or abnormal footprint (P and yellow cell) which
raised an alert, but the alert did not describe the activity
appropriately;

3) a potential visible match (V and orange cell) from
connection logs which requires human analysis or so-
phisticated anomaly detection for a positive match; and

4) in the worst case, no visible alerts nor connection logs
were generated (N and red cell).

Firstly, we observed that any exfiltration tool utilizing a
specific application layer protocol should adhere to its standard
port numbers if the malicious user aims to evade detection.
For example, a HTTP tunnel on port 22 triggered an outbound
SSH Scan alert with the ET ruleset, whereas when port 80 was
used, only HTTP connection logs were generated such that we
classified the attack as being only visible. Note that we marked
the outbound SSH Scan alert for the HTTP tunnel on port 22
only as a partial match because it was incorrectly identified
as an outbound SSH connection. Additionally, the same rule

23Snort v2.9.8.0. http://manual.snort.org/ (Accessed 07/12/2015)
24Suricata v2.1beta4. http://suricata-ids.org/docs/ (Accessed 07/12/2015)
25Bro v2.4.1 https://www.bro.org/documentation/index.html (Accessed

07/12/2015)
26Moloch v0.12.1. https://github.com/aol/moloch (Accessed 07/12/2015)

was responsible for a partial match against the nc64 technique
on port 22. Furthermore, an alert was raised if a SSH header
was detected on port 443, or if that port was used to send
unencrypted HTTP traffic. Similarly, if abnormal (non-DNS)
traffic was identified on UDP port 53, the ET ruleset triggered
alerts for either non-compliant traffic to DNS protocol, or for
being overly aggressive (i.e., having too many connections).
These signatures were easily bypassed if TCP port 53 was
used.

However, it has to be noted that most server applications can
be bound to any applicable port number (e.g. SSH on tcp/2022,
HTTPS console over tcp/8443), and thus can potentially be
used to avoid or obscure detection.

The difference between SF and ET rulesets in their default
configurations is significant. The former seems to focus solely
on perimeter intrusions, and hence could not detect any mali-
cious outbound traffic in our tests. Note, that the poor results
from our experiments with the SF ruleset severely influenced
the overall statistics. Taking this side note into consideration,
the other tool and ruleset combinations produced much better
detection rates. Furthermore, the ET ruleset produced slightly
different results in Snort and Suricata. Most importantly, the
former could clearly identify ICMP Ptunnel as the tool used
for traffic exfiltration.

Bro does not employ any traditional signatures like Snort
or Suricata, but does create logs for all identified connections.
As such, it was able to produce log records of all test cases.
However, although Bro does not generate alerts, it does have
an interesting log file named weird.log wherein a record of
detected anomalous connections is kept. In fact, during our
attacks, several weird.log records were generated for non-
compliant traffic on port 53. Additionally, Bro’s SSH con-
nection parser malfunctioned while processing non-standard
traffic, and abnormal logs could be observed in the detection
system.

Moloch provides no alerts, but is designed as a packet
capture, indexing and visualization tool. In the most recent
release, at the time of conducting the experiment, Moloch does
not support IPv6 due to various limitations when indexing
128-bit IP addresses27. Therefore, IPv6-only iterations were
unnoticed while IPv4 sessions generated by nc64 in dual-
stack configuration were visible. The t6to4 mode in tun64
encapsulates the IPv6 packet as payload making it visible in
IPv4 indexing system. This was observed only in cases of TCP
connections without additional GRE encapsulation.

From the executed test results, detection of malicious activ-
ity by NIDS rules was based predominantly on the direction of
network traffic, protocol, and destination port. This detection
approach is generally favored because it uses resources (e.g.
CPU, RAM) efficiently, with an expensive payload analy-
sis attempted only after the preceding match conditions are
achieved.

27Moloch 0.14.0 2016/05/08 CHANGELOG specifies a notice that “[IPv6]
support is experimental, and will change with ES 5.0.” https://github.com/aol/
moloch/blob/master/CHANGELOG (Accessed 16/08/2016)

8

http://manual.snort.org/
http://suricata-ids.org/docs/
https://www.bro.org/documentation/index.html
https://github.com/aol/moloch
https://github.com/aol/moloch/blob/master/CHANGELOG
https://github.com/aol/moloch/blob/master/CHANGELOG


In most cases, the nc64 tool avoided being detected, and
Table II shows which protocol/port combinations can be
used to minimize detection by selected NIDS solutions. In
comparison with other exfiltration tools, nc64 performed very
well on avoiding rule-based detection, and moreover could
potentially elude payload inspection.

In contrast, the tun64 tool was detected in the majority of
cases, since protocol-41 and protocol-47 triggered the rules
and generated warning messages by NIDSs. 6to4 tunneling
emulation was detected when TCP or 6in4-in-GRE encap-
sulation was used, suggesting that double encapsulation is
considered more suspicious. However, if an organization relies
on IPv6 tunneling-based transition mechanisms utilizing 6in4
or GRE encapsulation, such warnings might be silenced or
ignored by network-monitoring personnel. In contrast to other
tunneling tools the approach taken by tun64 is feasible only
if the network conditions comply with the specific operational
requirements.

A. Discussion with vendors

In order to compare and assess how commercial solutions
perform in comparison with the open-source ones used in
the experiment, vendors were approached to get their virtual
appliances for a limited trial period. Three major NIDS and
DLP product vendors agreed on supporting the research to
execute additional tests against the generated PCAP test cases.
These tests were conducted separately, outside the developed
testing environment, in close collaboration with the vendors.

An anonymous summary of the additional experiment re-
sults and discussions is the following:

1) IPv6 support is often not implemented due to customers
not requesting it;

2) Many monitoring tools were initially built with no IPv6
support in mind, and enabling it requires a fundamental
redesign of how 128-bit IPv6 addresses are processed
(e.g. not as strings or numbers in hexadecimal or decimal
form);

3) Vendors often use open-source detection tools in their
products;

4) Automated near real-time detection, traffic decapsula-
tion, and payload decoding is not performed due to high
resource requirements and introduction of additional
network latency;

5) Protocol analysis, payload inspection and extraction is
supported only for commonly used plain-text protocols
(e.g. HTTP, SMTP, FTP);

6) Manual asynchronous traffic analysis could be done
by human analyst whenever detection algorithms are
incapable of parsing the data or sorting out the false
positives; and

7) Warnings on suspicious protocol behavior (e.g. no SSH
traffic on port tcp/22) or RFC non-compliant traffic
(e.g. no TCP three way handshake completed) could
potentially be configured to be silently discarded or
ignored by system administrator, thus leading to attacks
not being observed.

It has to be noted that any commercial product which
uses an open-source tool for data acquisition is subjected
to same limitations of the respective tool. Also, the lack
of knowledge regarding IPv6 exploitation methods translate
into low customer demand which leads to insufficient IPv6
support in final products. Furthermore, any reasonably so-
phisticated data exfiltration method which splits that data into
smaller chunks and extracts the resulting pieces using different
connections/flows (e.g. IPv4 and IPv6) will be very hard to
detect in real-time by existing NIDS, which typically lack
any capability to correlate across different connections/flows.
Finally, commercial tools are often too expensive for small and
medium sized organizations. Therefore, we did not consider
these products in our final evaluation.

B. Cyber defense exercise results

To further test and verify the detection possibilities of
nc64 created covert channels by other technical solutions and
expert analysts, it was integrated as a side challenge into a
bigger digital forensic challenge. This was executed within
the technical cyber defense exercise Locked Shields 2016
which is “[...] the biggest and most advanced international
live-fire cyber defence exercise in the world [...], organised
[annually] since 2010 by the Tallinn-based NATO Cooperative
Cyber Defence Centre of Excellence [...].”28 Network digital
forensics challenge consisted of approximately 4GB large
PCAP file, where traffic between numerous hosts on different
networks was captured. Among other activities this packet
capture contained multiple exfiltrations of sensitive private
SSH keys via nc64 tool.

Exercise participants, twenty teams (i.e. the Blue Teams)
from NATO nations and Partner countries, each consisting of
lead cyber defense and digital forensic experts where given
the chance to participate in digital forensics challenge. Upon
completion of the forensic challenge, Blue Teams had to pre-
pare and submit reports. To verify the covert channel detection,
Blue Teams were provided with the following questions to be
answered in their report:

1) which IP addresses are engaged in exfiltration execution
(please specify all identified source and destination IP
addresses);

2) what approach is used to create a covert channel used
to exfiltrate information from the target network;

3) if possible, can you identify and extract the exfiltrated
sensitive administrative information?

The results of the digital forensics challenge for covert
channel identification and analysis is summarized in the table
III in appendix B. In the table, the following notation is used:
‘Yes’ denotes a correct answer, ‘No’ – an incorrect one, ‘–’
means that no answer was provided, and ‘Partial’ represents
that answer is partially correct or only some parts of technical
information were correctly presented.

28NATO CCD CoE, Locked Shields 2016. https://ccdcoe.org/locked-
shields-2016.html (Accessed 24/11/2016)

9

https://ccdcoe.org/locked-shields-2016.html
https://ccdcoe.org/locked-shields-2016.html


From the results it can be seen, that only one team out of
twenty was able to fully present all technical information and
identify the principle for covert channel established by nc64
tool. Three other teams were able to fully extract technical in-
formation, but were not able to identify or correctly formulate
what principle is being used for such channel establishment.
Also, it can be determined, that nearly half of the teams
did not even attempt solving this particular digital forensic
challenge, which might mean either their lack of expertise or
this challenge being prioritized as low and resources allocated
to main exercise engagement. Furthermore, the remaining
teams mostly provided no or partial technical information,
either being able to extract only IPv4 or IPv6 addresses,
or just addresses for the destination CnC host; as well as
presenting inaccurate identification of exfiltration operation
general principle, such as, base64 encoded exfiltration, SSL
over UDP tunneling, multiple machines (when actually only
two hosts were engaged in exfiltration), or usage of UDP over
common ports allowed by firewall.

The main point of this forensic challenge was to verify if
experienced human analyst or group of experts would be able
to properly identify, analyze and defend against an unknown
threat. This turned out to be very difficult as the teams were
struggling with this task.

C. Anomaly detection considerations

According to experiments described in [70] and [71] for
organizational networks, most users of such networks consis-
tently access the same set of services over longer periods of
time, and services accessed in the recent past by the user can
be leveraged for predicting the future behavior of that user.
In paper [70], an algorithm is described which maintains a
list of frequently accessed services for each user, and employs
these lists for detecting user behavior anomalies in private
networks. To verify how well such approach might work in
the context of Internet services, we obtained a HTTP traffic
log from a large EU institution that covers 60 days and
describes accessing of Internet websites on 1379 workstations.
We discovered that each workstation contacted an average of
135.57 hosts per day over HTTP (we identified hosts by their
IP addresses). When we investigated how frequently the same
hosts were accessed by workstations, we found that from all
hosts contacted by a workstation during the 60-day period,
32.85% hosts were accessed on at least 10% of the days (6
days), 20.45% are accessed on at least 25% of the days (15
days), and 13.03% of hosts are accessed during on at least
50% of the days (30 days). In contrast, a typical workstation
accesses an average of 64.73% hosts only during 1 day. These
findings suggest that although long-term HTTP usage patterns
can be identified for workstations, such patterns nevertheless
do not describe a significant part of the workstation HTTP
traffic, and pattern detection cannot predict the entire future
behavior of a workstation.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, the authors addressed a fundamental prob-
lem which could allow to bypass NIDSs by using the IPv6
tunneling-based and dual-stack transition mechanisms in a
certain way. The proof-of-concept tools were prototyped to
further verify under which circumstances the evasion of major
open-source and commercial NIDS and monitoring solutions
would be possible. Developed tools, tested along side with
other well known protocol tunneling tools, proved to be able
to evade detection and addressed certain shortcomings in the
core principles of how modern NIDSs work.

It has to be noted, that any reasonably sophisticated method
for exfiltrating data will be hard to detect in real-time by
existing NIDSs, especially in situations where the data is
split into smaller chunks and the resulting pieces use different
connections or protocols (e.g. IPv4 and IPv6). Detecting such
activity would require the capability to correlate the detection
information in near real-time across different flows. This is
theoretically possible, but would most likely incur a signif-
icant performance penalty and an increased number of false
positives. There are several possibilities to attempt correlating
flows using both IPv4 and IPv6 protocols. If the destination
host (i.e. CnC) used in multi-protocol exfiltration has a DNS
entry for both A and AAAA records, it would be possible to
perform a reverse lookup to identify that the connections are
going to the same domain name using IPv4 and IPv6 protocols
simultaneously. This should not happen under normal circum-
stances, since IPv6 is usually the preferred protocol on dual-
stack hosts. If no IPv6 privacy extensions (RFC4941) are used,
then host’s NIC MAC address would be used to generate a
unique IPv6 SLAAC EUI-64 (RFC2373) address. Such kind of
generated address in certain conditions could be used in order
to link data connections to a physical host. Another option
would be to rely solely on source NIC MAC address for ag-
gregating and correlating flows from both IPv4 and IPv6 which
are originating from the the same network interface. Note, that
this requires capturing the traffic from the network segment
where the actual source node resides, otherwise source MAC
address might get overwritten by network devices in transit.
One caveat still remains — distinguishing the flows which
are belonging together, especially on busy hosts with many
simultaneous connections. Finally, behavior based detection
(e.g. unexpected traffic, malformed packets, specification non-
compliance) would provide a way to detect such evasions,
at the same time introducing a significant amount of false
positives.

Authors acknowledge, that the tendency of use of IPv6
in attack campaigns conducted by sophisticated malicious
actors is going to increase. Since IPv6 security aspects are
being addressed by protocol RFC updates and deprecation
of obsolete transition mechanisms, it would be required to
focus on these issues at the security solution developer (i.e.
vendor) and implementer (i.e. consumer) levels. Adding IPv6
support to the security devices would not solve this problem,
since fundamental changes would be required in the way how

10



network traffic is interpreted and parsed, while being able to
trace the context of various data streams and perform their
correlation. Also, end-users should know how to properly
configure, deploy and monitor security solutions in order to
gain maximum awareness of the computer network flows
under their direct supervision.

Potential future research directions would include advanced
insider threat detection, IPv6 protocol stack implementation
analysis in the modern operating system kernels and in em-
bedded device micro-kernels.

VII. ACKNOWLEDGEMENTS

This research was conducted with the support of NATO
Cooperative Cyber Defence Centre of Excellence, Tallinn
University of Technology, and Estonian IT Academy (Study-
ITin.ee). The authors would like to acknowledge the valuable
contribution of Leo Trukšāns, Walter Willinger, and Merike
Käo.

This research has been presented and published in 21st
Nordic Conference NordSec 2016 proceedings Springer Lec-
ture Notes in Computer Science (LNCS): doi:10.1007/978-3-
319-47560-8 6.

REFERENCES

[1] P. Brangetto, E. Çalişkan, and H. Rõigas, Cyber Red Teaming - Organ-
isational, technical and legal implications in a military context. NATO
CCD CoE, 2015.

[2] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specifi-
cation,” RFC 2460, IETF Secretariat, December 1998. Standards Track.

[3] R. Tadayoni and A. Henten, “Transition from IPv4 to IPv6,” in 23rd
European Regional Conference of the International Telecommunication
Society, July 2012.

[4] P. Wu, Y. Cui, J. Wu, J. Liu, and C. Metz, “Transition from IPv4 to
IPv6: A State-of-the-Art Survey,” IEEE Comm. Surveys and Tutorials,
vol. 15, no. 3, pp. 1407–1424, 2013.

[5] A. Atlasis, “Attacking IPv6 Implementation Using Fragmentation,” tech.
rep., Centre for Strategic Cyberspace + Security Science, 2011.

[6] E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPv6
Hosts and Routers,” RFC 4213, IETF Secretariat, October 2005. Stan-
dards Track.

[7] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice, “Evaluating IPv6
Adoption in the Internet,” in PAM 2010, pp. 141–150, Springer-Verlag,
2010.

[8] J. Czyz, M. Allman, J. Zhang, S. Iekel-Johnson, E. Osterweil, and
M. Bailey, “Measuring IPv6 Adoption,” in ACM SIGCOMM14, 2014.

[9] M. Nikkhah, R. Guérin, Y. Lee, and R. Woundy, “Assessing IPv6
Through Web Access: A Measurement Study and Its Findings,” in ACM
CoNEXT 2011, December 2011.

[10] N. Sarrar, G. Maier, B. Ager, R. Sommer, and S. Uhlig, “Investigating
IPv6 Traffic: What Happened at the World IPv6 Day?,” in 13th Interna-
tional Conference, PAM 2012 (N. Taft and F. Ricciato, eds.), pp. 11–20,
Springer-Verlag, March 2012.

[11] Fortinet, “Biting the Bullet: A Practical Guide for Beginning the
Migration to IPv6,” white paper, Fortinet Inc., 2011.

[12] A. Turiel, “IPv6: new technology, new threats,” Network Security,
pp. 13–15, August 2011.

[13] F. Gont and M. Heuse, “Security Assessments of IPv6 Networks and
Firewalls.” IPv6 Congress 2013, 2013. Presentation.

[14] S. Hogg and E. Vyncke, IPv6 Security. Cisco Press, 2009.
[15] A. H. M. Taib and R. Budiarto, “Evaluating IPv6 Adoption in the

Internet,” in 5th Student Conference on Research and Development,
IEEE, December 2007.

[16] U.S. DHS, “Common Cybersecurity Vulnerabilities in Industrial Control
Systems,” tech. rep., U.S. Department of Homeland Security, May 2011.

[17] TrendLabs, “Targeted Attack Trends 2014 Report,” tech. rep., TrendMi-
cro, 2015.

[18] National Cybersecurity and Communications Integration Center, “ICS-
CERT Monitor,” tech. rep., US Dep. of Homeland Security, December
2013.

[19] G Data SecurityLabs, “Uroburos: Highly complex espionage software
with Russian roots,” tech. rep., G Data Software AG, February 2014.

[20] B. Blumbergs, “Technical Analysis of Advanced Threat Tactics Target-
ing Critical Information Infrastructure,” Cyber Security Review, pp. 25–
36, 2014.

[21] J. Palet, “6in4 versus 6over4 terminology,” tech. rep., IETF Secretariat,
November 2005. Internet Draft.

[22] S. Convery and D. Miller, “IPv6 and IPv4 Threat Comparison and Best-
Practice Evaluation,” white paper, Cisco Systems, March 2004.

[23] D. McPherson, “Eight Security Considerations for IPv6 Deployment,”
tech. rep., Verisign Inc., 2011.

[24] J. Ullrich, K. Krombholz, H. Hobel, A. Dabrowski, and E. Weippl,
“IPv6 Security: Attacks and Countermeasures in a Nutshell,” in USENIX
WOOT’14, SBA Research, 2014.

[25] C. Ottow, F. van Vliet, P. T. de Boer, and A. Pras, “The Impact of IPv6
on Penetration Testing,” in 18th IFIP International EUNICE Conference
on Information and Communications Technologies, August 2012.

[26] G. of the HKSAR, “IPV6 Security,” tech. rep., The Government of the
Hong Kong Special Administrative Region, May 2011.

[27] S.Degen et.al., “Testing the security of IPv6 implementations,” tech. rep.,
Ministry of Economic Affairs of the Netherlands, March 2014.

[28] F. Gont, “Results of a Security Assessment of the Internet Protocol
version 6 (IPv6).” Hack.lu 2011 Conference, 2011. Presentation.

[29] US-CERT, “Malware Tunneling in IPv6,” security advisory, US-CERT,
May 2005.

[30] F. Gont, W. Liu, and R. Bonica, “Transmission and Processing of
IPv6 Options,” tech. rep., IETF Secretariat, March 2015. Best Current
Practice.

[31] S. Frankel, R. Graveman, J. Pearce, and M. Rooks, “SP 800-119:
Guidelines for the Secure Deployment of IPv6,” special publication,
National Institute of Standards and Technology, December 2010.

[32] F. Gont, “Security Implications of IPv6 on IPv4 Networks,” RFC 7123,
Feb 2014.

[33] B. Blunden, The Rootkit Arsenal: Escape and Evasion in the Dark
Corners of the System, 2nd ed., ch. 14. Covert Channels. Jones and
Bartlett Learning, 2013.

[34] A. Mileva and B. Panajotov, “Covert channels in TCP/IP protocol stack,”
Central European Journal of Computer Science, vol. 4, no. 2, pp. 45–66,
2014.

[35] R. Murphy, “IPv6 / ICMPv6 Covert Channels.” DEF CON’14, 2014.
Presentation.

[36] M. Colajanni, L. D. Zotto, M. Marchetti, and M. Messori, “Defeating
NIDS evasion in Mobile IPv6 networks,” in IEEE, 2011.

[37] N. B. Lucena, G. Lewandowski, and S. J. Chapin, “Covert Channels
in IPv6,” in PET 2005 (G. Danezis and D. Martin, eds.), pp. 147–166,
Springer-Verlag, 2006.

[38] A. Atlasis, “Security Impacts of Abusing IPv6 Extension Headers,” tech.
rep., Centre for Strategic Cyberspace + Security Science, 2012.

[39] F. Gont, “Processing of IPv6 “Atomic” Fragments,” RFC 6946, May
2013.

[40] S. Krishnan, “Handling of Overlapping IPv6 Fragments,” RFC 5722,
IETF Secretariat, December 2009. Standards Track. Updates RFC 2460.

[41] S. Krishnan, J. Woodyatt, E. Kline, J. Hoagland, and M. Bhatia, “A
Uniform Format for IPv6 Extension Headers,” tech. rep.

[42] S. Pastrana, J. Montero-Castillo, and A. Orfila, Advances in Security
Information Management: Perceptions and Outcomes, ch. 7. Evading
IDSs and firewalls as fundamental sources of information in SIEMS.
Nova Science Publishers, Jan 2013.

[43] A. Atlasis and E. Rey, “Evasion of High-End IPS Devices in the Age
of IPv6,” tech. rep., secfu.net, 2014.

[44] J. M. Vidal, J. D. M. Castro, A. L. S. Orozco, and L. J. G. Vil-
lalba, “Evolutions of Evasion Techniques Aigainst Network Intrusion
Detection Systems,” in ICIT 2013, The 6th International Conference on
Information Technology, May 2013.

[45] V. Bukač, “IDS System Evasion Techniques,” Master’s thesis,
Masarykova Univerzita Fakulta Informatiky, 2010.

[46] O. P. Niemi, A. Levomki, and J. Manner, “Dismantling Intrusion
Prevention Systems,” in ACM SIGCOMM12, August 2012.

[47] W. Ellens, P. Źuraniewski, A. Sperotto, H. Schotanus, M. Mandjes, and
E. Meeuwissen, “Covert Channels in IPv6,” in Flow-Based Detection
of DNS Tunnels (G. Doyen, M. Waldburger, P. Čeleda, A. Sperotto,

11



and B. Stiller, eds.), vol. 7943 of Lecture Notes in Computer Science,
pp. 124–135, Springer Berlin Heidelberg, 2013.

[48] P. Butler, K. Xu, and D. D. Yao, “Quantitatively analyzing stealthy
communication channels,” in Proceedings of the 9th International Con-
ference on Applied Cryptography and Network Security, ACNS’11,
(Berlin, Heidelberg), pp. 238–254, Springer-Verlag, 2011.

[49] H. Bhanu, J. Schwier, R. Craven, R. Brooks, K. Hempstalk, D. Gunetti,
and C. Griffin, “Side-Channel Analysis for Detecting Protocol Tunnel-
ing,” in Advances in Internet of Things, vol. 1, pp. 13–26, July 2011.

[50] M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Detection of
Encrypted Tunnels Across Network Boundaries,” in International Con-
ference on Communications, pp. 1738–1744, IEEE, May 2008.

[51] S. Zander, G. Armitage, and P. Branch, “A survey of covert channels
and countermeasures in computer network protocols,” Communications
Surveys Tutorials, IEEE, vol. 9, pp. 44–57, September 2007.

[52] S. Prowell, R. Kraus, and M. Borkin, Seven Deadliest Network Attacks,
ch. 4. Protocol Tunneling, pp. 59–73. Syngress, 2010.

[53] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic
Routing Encapsulation (GRE),” RFC 2784, IETF Secretariat, March
2000. Standards Track. Supplemented with RFC2890.

[54] D. Maier, O. Haase, J. Wäsch, and M. Waldvogel, “NAT Hole Punch-
ing Revisited,” in 36th Annual IEEE Conference on Local Computer
Networks, pp. 147–150, 2011.

[55] A. Müller, N. Evans, C. Grothoff, and S. Kamkar, “Autonomous NAT
Traversal,” in IEEE Tenth International Conference on Peer-to-Peer
Computing (P2P), August 2010.

[56] A. Conta and S. Deering, “Generic Packet Tunneling in IPv6 Specifica-
tion,” RFC 2473, IETF Secretariat, December 1998. Standards Track.

[57] S. Steffann, I. van Beijnum, and R. van Rein, “A Comparison of IPv6-
over-IPv4 Tunnel Mechanisms,” RFC 7059, IETF Secretariat, November
2013. Informational.

[58] S. Krishnan, D. Thaler, and J. Hoagland, “Security Concerns with IP
Tunneling,” RFC 6169, IETF Secretariat, April 2011. Informational.

[59] Microsoft, “IPv6 Transition Technologies,” windows server 2008 white
paper, Microsoft Corp., 2008.

[60] K. Moore, “Connection of IPv6 Domains via IPv4 Clouds,” RFC 3056,
IETF Secretariat, February 2001. Standards Track.

[61] O. Troan and B. Carpenter, “Deprecating the Anycast Prefix for 6to4
Relay Routers,” RFC 7526, IETF Secretariat, May 2015. Best Current
Practice.

[62] W. Townsley and O. Troan, “IPv6 Rapid Deployment on IPv4 Infras-
tructures (6rd) –Protocol Specification,” RFC 5969, IETF Secretariat,
August 2010. Standards Track.

[63] R. Despres, “IPv6 Rapid Deployment on IPv4 Infrastructures (6rd),”
RFC 5569, IETF Secretariat, January 2010. Informational.

[64] B. Carpenter and C. Jung, “Transmission of IPv6 over IPv4 Domains
without Explicit Tunnels,” RFC 2529, IETF Secretariat, March 1999.
Standards Track.

[65] F. Templin, T. Gleeson, and D. Thaler, “Intra-Site Automatic Tunnel
Addressing Protocol (ISATAP),” RFC 5214, IETF Secretariat, March
2008. Informational.

[66] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network
Address Translations (NATs),” RFC 4380, IETF Secretariat, February
2006. Standards Track.

[67] R. E. Gilligan, “Simple Internet Transition Overview,” tech. rep., IETF
Secretariat, November 1994. Internet Draft.

[68] J. Massar, “AYIYA: Anything In Anything,” tech. rep., IETF Secretariat,
July 2004. Internet Draft.

[69] A. Durand, P. Fasano, I. Guardini, and D. Lento, “IPv6 Tunnel Broker,”
RFC 3053, IETF Secretariat, Jauary 2001. Informational.

[70] R. Vaarandi, “Detecting Anomalous Network Traffic in Organizational
Private Networks,” in IEEE CogSIMA Conference, pp. 285–292, 2013.

[71] J. McHugh and C. Gates, “Locality - A New Paradigm for Think-
ing About Normal Behavior and Outsider Threat,” in New Security
Paradigms Workshop, pp. 3–10, 2003.

12



APPENDIX A

TABLE II: Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
http-22 4 TCP 22 N P P P V
http-443 4 TCP 443 N Y Y V V
http-53 4 TCP 53 N Y Y P V
http-80 4 TCP 80 N N V V V
Iodine 4 UDP 53 N N Y P V
nc64-t-22-4-b64 4 TCP 22 N P P V V
nc64-t-22-4 4 TCP 22 N P P V V
nc64-t-22-64-b64 4+6 TCP 22 N P P V V
nc64-t-22-64 4+6 TCP 22 N P P V V
nc64-t-22-6-b64 6 TCP 22 N P P V N
nc64-t-22-6 6 TCP 22 N P P V N
nc64-t-443-4-b64 4 TCP 443 N N N V V
nc64-t-443-4 4 TCP 443 N N N V V
nc64-t-443-64-b64 4+6 TCP 443 N N N V V
nc64-t-443-64 4+6 TCP 443 N N N V V
nc64-t-443-6-b64 6 TCP 443 N N N V N
nc64-t-443-6 6 TCP 443 N N N V N
nc64-t-53-4-b64 4 TCP 53 N N N P V
nc64-t-53-4 4 TCP 53 N N N P V
nc64-t-53-64-b64 4+6 TCP 53 N N N P V
nc64-t-53-64 4+6 TCP 53 N N N P V
nc64-t-53-6-b64 6 TCP 53 N N N P N
nc64-t-53-6 6 TCP 53 N N N P N
nc64-t-80-4-b64 4 TCP 80 N N N P V
nc64-t-80-4 4 TCP 80 N N N P V
nc64-t-80-64-b64 4+6 TCP 80 N N N P V
nc64-t-80-64 4+6 TCP 80 N N N P V
nc64-t-80-6-b64 6 TCP 80 N N N P N
nc64-t-80-6 6 TCP 80 N N N P N
nc64-u-22-4-b64 4 UDP 22 N N N V V
nc64-u-22-4 4 UDP 22 N N N V V
nc64-u-22-64-b64 4+6 UDP 22 N N N V V
nc64-u-22-64 4+6 UDP 22 N N N V V
nc64-u-22-6-b64 6 UDP 22 N N N V N
nc64-u-22-6 6 UDP 22 N N N V N
nc64-u-443-4-b64 4 UDP 443 N N N V V
nc64-u-443-4 4 UDP 443 N N N V V
nc64-u-443-64-b64 4+6 UDP 443 N N N V V
nc64-u-443-64 4+6 UDP 443 N N N V V
nc64-u-443-6-b64 6 UDP 443 N N N V N
nc64-u-443-6 6 UDP 443 N N N V N
nc64-u-53-4-b64 4 UDP 53 N Y Y P V
nc64-u-53-4 4 UDP 53 N Y Y P V
nc64-u-53-64-b64 4+6 UDP 53 N Y Y P V
nc64-u-53-64 4+6 UDP 53 N Y Y P V
nc64-u-53-6-b64 6 UDP 53 N Y Y P N
nc64-u-53-6 6 UDP 53 N Y Y P N
nc64-u-80-4-b64 4 UDP 80 N N N V V
nc64-u-80-4 4 UDP 80 N N N V V

13



TABLE II: Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
nc64-u-80-64-b64 4+6 UDP 80 N N N V V
nc64-u-80-64 4+6 UDP 80 N N N V V
nc64-u-80-6-b64 6 UDP 80 N N N V N
nc64-u-80-6 6 UDP 80 N N N V N
netcat-t-22-4 4 TCP 22 N N N V V
netcat-t-22-6 6 TCP 22 N N N V N
netcat-t-443-4 4 TCP 443 N N N V V
netcat-t-443-6 6 TCP 443 N N N V N
netcat-t-53-4 4 TCP 53 N N N P V
netcat-t-53-6 6 TCP 53 N N N P N
netcat-t-80-4 4 TCP 80 N N N V V
netcat-t-80-6 6 TCP 80 N N N V N
netcat-u-22-4 4 UDP 22 N N N V V
netcat-u-22-6 6 UDP 22 N N N V N
netcat-u-443-4 4 UDP 443 N N N V V
netcat-u-443-6 6 UDP 443 N N N V N
netcat-u-53-4 4 UDP 53 N Y Y P V
netcat-u-53-6 6 UDP 53 N Y Y P N
netcat-u-80-4 4 UDP 80 N N N V V
netcat-u-80-6 6 UDP 80 N N N V N
ptunnel 4 ICMP N Y N V V
ssh-4-22 4 TCP 22 N N V V V
ssh-4-443 4 TCP 443 N Y Y V V
ssh-4-53 4 TCP 53 N N V V V
ssh-4-80 4 TCP 80 N N V P V
ssh-6-22 6 TCP 22 N N V P N
ssh-6-443 6 TCP 443 N Y Y P N
ssh-6-53 6 TCP 53 N N V P N
ssh-6-80 6 TCP 80 N N V P N
tun64-t-22-isatap 4 TCP 22 N Y Y P N
tun64-t-22-t6over4 4 TCP 22 N Y Y P N
tun64-t-22-t6to4 4 TCP 22 N Y Y P V
tun64-t-443-isatap 4 TCP 443 N Y Y P N
tun64-t-443-t6over4 4 TCP 443 N Y Y P N
tun64-t-443-t6to4 4 TCP 443 N Y Y P V
tun64-t-53-isatap 4 TCP 53 N Y Y P N
tun64-t-53-t6over4 4 TCP 53 N Y Y P N
tun64-t-53-t6to4 4 TCP 53 N Y Y P V
tun64-t-80-isatap 4 TCP 80 N Y Y P N
tun64-t-80-t6over4 4 TCP 80 N Y Y P N
tun64-t-80-t6to4 4 TCP 80 N Y Y P V
tun64-u-22-isatap 4 UDP 22 N Y Y P N
tun64-u-22-t6over4 4 UDP 22 N Y Y P N
tun64-u-22-t6to4 4 UDP 22 N Y Y P N
tun64-u-443-isatap 4 UDP 443 N Y Y P N
tun64-u-443-t6over4 4 UDP 443 N Y Y P N
tun64-u-443-t6to4 4 UDP 443 N Y Y P N
tun64-u-53-isatap 4 UDP 53 N Y Y P N
tun64-u-53-t6over4 4 UDP 53 N Y Y P N
tun64-u-53-t6to4 4 UDP 53 N Y Y P N
tun64-u-80-isatap 4 UDP 80 N Y Y P N

14



TABLE II: Protocol tunneling and data exfiltration tool assessment

Iteration IP Version Protocol Port Snort SF Snort ET Suricata Bro Moloch
tun64-u-80-t6over4 4 UDP 80 N Y Y P N
tun64-u-80-t6to4 4 UDP 80 N Y Y P N
tun64-t-22-isatap-gre 4 TCP 22 N Y Y P N
tun64-t-22-t6over4-gre 4 TCP 22 N Y Y P N
tun64-t-22-t6to4-gre 4 TCP 22 N Y Y P V
tun64-t-443-isatap-gre 4 TCP 443 N Y Y P N
tun64-t-443-t6over4-gre 4 TCP 443 N Y Y P N
tun64-t-443-t6to4-gre 4 TCP 443 N Y Y P V
tun64-t-53-isatap-gre 4 TCP 53 N Y Y P N
tun64-t-53-t6over4-gre 4 TCP 53 N Y Y P N
tun64-t-53-t6to4-gre 4 TCP 53 N Y Y P V
tun64-t-80-isatap-gre 4 TCP 80 N Y Y P N
tun64-t-80-t6over4-gre 4 TCP 80 N Y Y P N
tun64-t-80-t6to4-gre 4 TCP 80 N Y Y P V
tun64-u-22-isatap-gre 4 UDP 22 N Y Y P N
tun64-u-22-t6over4-gre 4 UDP 22 N Y Y P N
tun64-u-22-t6to4-gre 4 UDP 22 N Y Y P V
tun64-u-443-isatap-gre 4 UDP 443 N Y Y P N
tun64-u-443-t6over4-gre 4 UDP 443 N Y Y P N
tun64-u-443-t6to4-gre 4 UDP 443 N Y Y P V
tun64-u-53-isatap-gre 4 UDP 53 N Y Y P N
tun64-u-53-t6over4-gre 4 UDP 53 N Y Y P N
tun64-u-53-t6to4-gre 4 UDP 53 N Y Y P V
tun64-u-80-isatap-gre 4 UDP 80 N Y Y P N
tun64-u-80-t6over4-gre 4 UDP 80 N Y Y P N
tun64-u-80-t6to4-gre 4 UDP 80 N Y Y P V

APPENDIX B

TABLE III
LOCKED SHIELDS 2016 DIGITAL FORENSIC EXFILTRATION CHALLENGE OVERVIEW

Blue Team No. Identified IPv4 addresses Identified IPv6 addresses nc64 approach described Exfiltrated data extracted
1 No No No Partial
2 – – – –
3 Yes Yes No Yes
4 No Yes No Partial
5 – – – –
6 – – – –
7 Yes Yes No Yes
8 Yes Yes Yes Yes
9 Partial No No No
10 – – – –
11 Yes Partial No Partial
12 – – – –
13 – – – –
14 No Partial No Partial
15 – – – –
16 Yes No No Partial
17 – – – –
18 Yes Yes Yes Yes
19 – – – –
20 Yes No No No

15


	Introduction
	Background and related previous work
	Covert channel implementations
	Protocol tunneling
	Proof-of-concept nc64 tool
	Proof-of-concept tun64 tool

	Testing environment and test description
	Attack scenario
	Testing environment

	Experiment execution and discussion of results
	Discussion with vendors
	Cyber defense exercise results
	Anomaly detection considerations

	Conclusions and further work
	Acknowledgements
	References
	Appendix A
	Appendix B

