

Draft NISTIR 8151 1

 2

Dramatically Reducing Software Vulnerabilities 3

Report to the White House Office of Science and Technology Policy 4

 5

Paul E. Black 6
Lee Badger 7

Barbara Guttman 8
Elizabeth Fong 9

 10

 11

 12

 13

 14

 15

 16

Draft NISTIR 8151 17

 18

Dramatically Reducing Software Vulnerabilities 19

Report to the White House Office of Science and Technology Policy 20

 21

Paul E. Black 22
Lee Badger 23

Barbara Guttman 24
Elizabeth Fong 25

Information Technology Laboratory 26
 27
 28
 29
 30
 31
 32
 33
 34

October 2016 35
 36
 37

 38
 39
 40

U.S. Department of Commerce 41
Penny Pritzker, Secretary 42

 43
National Institute of Standards and Technology 44

Willie May, Under Secretary of Commerce for Standards and Technology and Director 45

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
REPORT TO OSTP

i

National Institute of Standards and Technology Interagency Report 8151 46
50 pages (October 2016) 47

48
49

Certain commercial entities, equipment, or materials may be identified in this document in order to describe an 50
experimental procedure or concept adequately. Such identification is not intended to imply recommendation or 51
endorsement by NIST, nor is it intended to imply that the entities, materials, or equipment are necessarily the best 52
available for the purpose. 53
There may be references in this publication to other publications currently under development by NIST in accordance 54
with its assigned statutory responsibilities. The information in this publication, including concepts and methodologies, 55
may be used by federal agencies even before the completion of such companion publications. Thus, until each 56
publication is completed, current requirements, guidelines, and procedures, where they exist, remain operative. For 57
planning and transition purposes, federal agencies may wish to closely follow the development of these new 58
publications by NIST. 59
Organizations are encouraged to review all draft publications during public comment periods and provide feedback to 60
NIST. Many NIST cybersecurity publications, other than the ones noted above, are available at 61
http://csrc.nist.gov/publications.62

63

64

Public comment period: October 4, 2016 through October 18, 2016 65
National Institute of Standards and Technology 66

Attn: Computer Security Division, Information Technology Laboratory 67
100 Bureau Drive (Mail Stop 8930) Gaithersburg, MD 20899-8930 68

Email: paul.black@nist.gov (SUBJECT=“DRAFT NISTIR 8151 Comments”) 69

All comments are subject to release under the Freedom of Information Act (FOIA). 70
71

http://csrc.nist.gov/publications
mailto:paul.black@nist.gov?subject=DRAFT%20NISTIR%208151%20Comments

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

ii

Abstract 72

The call for a dramatic reduction in software vulnerability is heard from multiple sources, 73
recently from the February 2016 Federal Cybersecurity Research and Development Strategic 74
Plan. This plan starts by describing well known risks: current systems perform increasingly vital 75
tasks and are widely known to possess vulnerabilities. These vulnerabilities are often easy to 76
discover and difficult to correct. Cybersecurity has not kept pace and the pace that is needed is 77
rapidly accelerating. The goal of this report is to present a list of specific approaches that have 78
the potential to make a dramatic difference in reducing vulnerabilities – by stopping them before 79
they occur, by finding them before they are exploited or by reducing their impact. 80
 81

Keywords: 82

Measurement; metrics; software assurance; security vulnerabilities; reduce software 83
vulnerability. 84

Acknowledgements: 85

Extravagant thanks to Joshi Rajeev rajeev.joshi@jpl.nasa.gov for contributions to Sect. 2.3 86
Additive Software Analysis Techniques. 87

Effusive thanks to W. Konrad Vesey (william.k.vesey.ctr@mail.mil), Contractor, MIT Lincoln 88
Laboratory, Office of the Assistant Secretary of Defense, Research and Engineering, for much of 89
the material in Sect. 2.5 Moving Target Defense (MTD) and Artificial Diversity. Much of the 90
wording is directly from a private communication from him. 91

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

iii

Table of Contents 92
1 Introduction ... 1 93

1.1 SCOPE of REPORT ... 2 94

1.2 METRICS ... 3 95

1.3 METHODOLOGY ... 3 96

1.4 REPORT ORGANIZATION .. 4 97

2 Technical Approaches ... 4 98
2.1 Formal Methods .. 5 99

2.1.1 Rigorous Static Program Analysis .. 5 100

2.1.2 Model Checkers, SAT Solvers and Other “Light Weight” Decision Algorithms .. 6 101

2.1.3 Directory of Verified Tools and Verified Code .. 7 102

2.1.4 Pragmas, Assertions, Pre- and Postconditions, Invariants, Properties, Contracts 103
and Proof Carrying Code .. 7 104

2.1.5 Correct-by-Construction and Model-Based Development 8 105

2.2 System Level Security .. 9 106

2.2.1 Operating System Containers ... 11 107

2.2.2 Microservices .. 11 108

2.3 Additive Software Analysis Techniques ... 13 109

2.3.1 Software Information Expression and Exchange Standards 14 110

2.3.2 Tool Development Framework or Architecture .. 15 111

2.3.3 Combining Analysis Results ... 16 112

2.4 More Mature Domain-Specific Software Development Frameworks 18 113

2.4.1 Rapid Framework Adoption ... 20 114

2.4.2 Compositional Testing .. 21 115

2.4.3 Conflict Resolution in Multi-Framework Composition .. 21 116

2.5 Moving Target Defenses (MTD) and Artificial Diversity .. 22 117

2.5.1 Compile-Time Techniques.. 22 118

2.5.2 System or Network Techniques .. 23 119

2.5.3 Operating System Techniques .. 23 120

3 Measures and Metrics ... 25 121
3.1 A Taxonomy of Software Metrics .. 26 122

3.2 Software Assurance: The Object of Software Metrics ... 28 123

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

iv

3.3 Software Metrology .. 28 124

3.4 Product Metrics ... 29 125

3.4.1 Existing Metrics .. 30 126

3.4.2 Better Code ... 31 127

3.4.3 Metrics and Measures of Binaries and Executables ... 31 128

3.4.4 More Useful Tool Outputs .. 31 129

4 Summary and Community Engagement ... 33 130
4.1 Engaging the Research Community.. 33 131

4.1.1 Grand Challenges, Prizes and Awards .. 33 132

4.1.2 Research Infrastructure ... 33 133

4.2 Education and Training ... 34 134

4.3 Consumer-Enabling Technology Transfer .. 35 135

4.3.1 Government Contracting and Procurement .. 35 136

4.3.2 Liability ... 35 137

4.3.3 Insurance ... 35 138

4.3.4 Vendor-Customer Relations.. 35 139

4.3.5 Standards ... 36 140

4.3.6 Code Repositories ... 36 141

4.4 Conclusion .. 36 142

5 References ... 38 143
 144

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

1

1 Introduction 145
The call for a dramatic reduction in software vulnerability is being heard from multiple sources, 146
including the February 2016 Federal Cybersecurity Research and Development Strategic Plan 147
[FCRDSP16]. This plan starts by describing a well-known risk: current systems perform 148
increasingly vital tasks and are widely known to possess vulnerabilities. These vulnerabilities are 149
often easy to discover and difficult to correct. Cybersecurity has not kept pace and the pace that 150
is needed is rapidly accelerating. The plan defines goals for the near, mid and long term. This 151
report addresses the first mid-term goal: 152
 153

Achieve S&T advances to reverse adversaries’ asymmetrical advantages, through 154
sustainably secure systems development and operation. This goal is two-pronged: first, 155
the design and implementation of software, firmware, and hardware that are highly 156
resistant to malicious cyber activities (e.g., software defects, which are common, give rise 157
to many vulnerabilities) …. 158
 159

Since it is central to the purpose of this report, we define what we mean by “vulnerability.” A 160
vulnerability is a property of system security requirements, design, implementation or operation 161
that could be accidentally triggered or intentionally exploited and result in a violation of desired 162
system properties. A vulnerability is the result of one or more weaknesses in requirements, 163
design, implementation or operation [Black11a]. This definition excludes 164

• operational problems, such as installing a program as world-readable or setting a trivial 165
password for administrator access. 166

• insider malfeasance, such as exfiltration ala Snowden. 167
• functional bugs, such as the mixture of SI and Imperial units, which led to the loss of the 168

Mars Climate Orbiter in 1999 [Oberg99]. 169
• purposely introduced malware or corrupting “mis-features” in regular code, such as 170

allowing root access by user names like “JoshuaCaleb.” We exclude this vulnerability, 171
because it is intentionally inserted. One assumes that a bad actor will fashion it to pass 172
review/quality control processes. 173

• software weaknesses that cannot be exploited (by “outsiders”) as a result of input 174
filtering or other mitigations. 175

 176
Great strides have been made in defining software vulnerabilities, cataloging them and 177
understanding them. Additionally, great strides have been made in educating the software 178
community about the vulnerabilities, attendant patches and underlying weaknesses. This work, 179
however, is insufficient. Significant vulnerabilities are found routinely, many vulnerabilities lie 180
undiscovered for years and patches are often not applied. Clearly a different approach – one that 181
relies on improving software – is needed. 182
 183

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

2

Strengthening protection requires increasing assurance that the products people develop 184
and deploy are highly resistant to malicious cyber activities, because they include very 185
few vulnerabilities…. [FCRDSP16, p 17] 186

 187

1.1 SCOPE of REPORT 188

The goal of this report is to present a list of specific approaches that have the potential to make a 189
dramatic difference reducing vulnerabilities – by stopping them before they occur, by finding 190
them before they are exploited or by reducing their impact. 191
 192

• Stopping vulnerabilities before they occur generally includes improved methods for 193
specifying and building software. 194

• Finding vulnerability includes better testing techniques and more efficient use of multiple 195
testing methods. 196

• Reducing the impact of vulnerabilities refers to techniques to build architectures that are 197
more resilient, so that vulnerabilities cannot be meaningfully exploited. 198

 199
The report does not segregate the approaches into these three bins, since some approaches may 200
include pieces from multiple bins. 201
 202
The list of approaches for reducing vulnerabilities focuses on approaches that meet three criteria: 203

1. Dramatic impact 204
2. 3 to 7-year timeframe 205
3. Technical activities 206

 207
Dramatic. This means reducing exploitable vulnerabilities by two orders of magnitude. 208
Estimates of software vulnerabilities are up to 25 errors per 1 000 lines of code [McConnell04, 209
page 521]. These approaches have been selected for the possibility of getting to 2.5 errors per 10 210
000 lines of code. The ability to measure whether an approach has a dramatic impact requires the 211
ability to measure it. Measuring software quality is a difficult task. A parallel effort on 212
improvements for measuring software vulnerabilities was pursued. 213
 214
3 to 7-year timeframe. This timeframe was selected, because it is far enough out to make 215
dramatic changes, based on existing techniques, but not having reached their full potential for 216
impact. It is a timeframe that it is reasonable to speculate about. Beyond this timeframe, it is too 217
difficult to predict what new technologies and techniques will be developed, potentially making 218
their own set of dramatic changes on how IT is used. In the near future, the emphasis will be on 219
implementing techniques that are already being deployed. 220
 221
Technical. There are many different types of approaches to reducing software vulnerabilities, 222
many of which are not primarily technical – from helping users meaningfully request security to 223

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

3

funding research and operational activities and training all parties, who design, build, test and 224
use software. During the development of this report, many ideas were put forward across this 225
broad span. The report only addresses technical approaches in order to have a manageable scope, 226
which builds on expertise available during the development of the report. These other areas are 227
critical, too. 228
 229
During the drafting of this report, many excellent ideas were brought forth that are outside the 230
scope of this report and are summarized in Section 4 under Community Engagement. Examples 231
of these activities include: 232

• Improved funding 233
• Improving education 234
• More research for various aspects of software understanding 235
• Increased use of grand challenges and competitions 236
• Providing better methods for consumers of software to ask for and evaluate lower-237

vulnerability software 238
 239
This report excludes a discussion of vulnerabilities in firmware and hardware. This is not to say 240
that these are not critical. These can be addressed in another report. This report targets a broad 241
range of software, including government-contracted software, commercial and open source 242
software. It covers software used for general use, mobile devices and embedded in appliances 243
and devices. The goal is to prevent vulnerabilities in new code, in addition to identifying and 244
fixing vulnerabilities in existing code. 245
 246

1.2 METRICS 247

There are multiple efforts to define software vulnerabilities, their prevalence, their detectability 248
and the efficacy of detection and mitigation techniques. The ability to measure software can play 249
an important role in dramatically reducing software vulnerabilities. Industry requires evidence of 250
the extent of such vulnerabilities, in addition to knowledge in determining which techniques are 251
most effective in developing software with far few vulnerabilities. Additionally, and more 252
critically, industry requires guidance in identifying the best places in code to deploy mitigations 253
or other actions. This evidence comes from measuring, in the broadest sense, or assessing the 254
properties of software. 255
 256

1.3 METHODOLOGY 257

In order to produce the list of approaches, the Office of Science and Technology Policy asked 258
NIST to lead a community-based effort. NIST consulted with multiple experts in the software 259
assurance community including: 260

• Two Office of Science and Technology Policy (OSTP)-hosted inter-agency roundtables 261
• Half day session at the Software and Supply Chain Assurance Summer Forum 262

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

4

• Full day workshop on Software Measures and Metrics to Reduce Security Vulnerabilities 263
• Public comment 4-18 October 2016 264

 265

1.4 REPORT ORGANIZATION 266

The report is organized into two major sections. The first enumerates technical approaches and 267
the second addresses metrics. 268

Section 2 covers technical approaches in dealing with vulnerabilities in software. These include 269
formal methods, such as rigorous static program analyses, model checkers and SAT solvers. It 270
also suggests having a directory of verified tools and verified code. This section addresses 271
system level security, including operating system containers and microservices. Additive 272
software analysis techniques are addressed. Finally, it discusses moving target defenses (MTD) 273
and artificial diversity. These include compile-time time techniques, system or network 274
techniques and operating system techniques. 275

Each subsection follows the same format: 276
• Definition and Background: Definition of the area and background 277
• Maturity Level: How mature the area is, including a discussion of whether the approach 278

has been used in the “real world” or just in a laboratory and issues related to scalability 279
and usability. 280

• Basis for Confidence: Rationale for why this could work 281
• Rational for potential impact 282
• Further Reading, papers, other materials 283

Section 3 covers measures and metrics. It is designed to encourage the adoption of metrics and 284
other tools to address vulnerabilities in software. It addresses product metrics and how to 285
develop better code. It also addresses the criticality of software security and quality metrics. 286

 287

2 Technical Approaches 288
 289

There are many approaches at varying levels of maturity that show great promise for reducing 290
the number of vulnerabilities in software. This report highlights five of them that are sufficiently 291
mature and have shown success so that it is possible to extrapolate into a 3 to 7 year horizon. 292
This list is not an exhaustive list, but rather to show that it is possible to make significant 293
progress in reducing vulnerabilities and to lay out paths to achieve this ambitious goal. 294

 295

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

5

2.1 Formal Methods 296

Formal methods include all software analysis approaches based on mathematics and logic, 297
including parsing, type checking, correctness proofs, model-based development and correct-by-298
construction. Formal methods can help software developers achieve greater assurance that entire 299
classes of vulnerabilities are absent and can also help reduce unpredictable cycles of expensive 300
testing and bug fixing. 301

In the early days of programming, some practitioners proved the correctness of their programs. 302
As the use of software exploded and programs grew so large that purely manual proofs were 303
infeasible, formalized correctness arguments lost favor. In recent decades, developments such 304
Moore’s law, multi-core processors and cloud computing make orders of magnitude more 305
compute power readily available. Advances in algorithms for solving Boolean Satisfiability 306
(SAT) problems, decision procedures (e.g., ordered binary decision diagrams OBDD) and 307
reasoning models (e.g., abstract interpretation and separation logic) dramatically slashed 308
resources required to answer questions about software. 309

By the 1990s, formal methods had developed a bad reputation as taking far too long, in machine 310
time, person years and project time, and requiring a PhD in computer science and mathematics to 311
use. It is not that way anymore. Formal methods are widely used today. For instance, compilers 312
use SAT solvers to allocate registers and optimize code. Operating systems use algorithms 313
formally guaranteed to avoid deadlock. These are what Kiniry and Zimmerman call [Kiniry08] 314
Secret Ninja Formal Methods: they are invisible to the user, except to report that something is 315
not right. In contrast to such “invisible” use of formal methods, overt use often requires recasting 316
problems into a form compatible with formal methods tools. Most proposed cryptographic 317
protocols are now examined with model checkers for possible exploits. Practitioners also use 318
model checkers to look for attack paths in networks. 319

Despite their strengths, formal methods are less effective if there is no clear statement of 320
software requirements or if what constitutes proper software behavior can only be determined by 321
human judgment or through balancing many conflicting factors. Thus we would not expect 322
formal methods to contribute much to the evaluation of the usability of a user interface, 323
development of exploratory software or unstructured problems. 324

Formal methods include many, many techniques at all stages of software development and in 325
many different application areas. We do not list every possibly helpful formal method. Instead, 326
we concentrate on a few that may contribute significantly in the medium term. 327

2.1.1 Rigorous Static Program Analysis 328
Static analysis is the examination of software for specific properties without executing it. For our 329
purposes, we only consider automated analysis. Heuristic analysis is faster than rigorous 330
analysis, but lacks assurance that comes from a chain of logical reasoning. Some questions can 331
only be answered by running the software under analysis, i.e., through dynamic analysis. 332

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

6

Combining static and dynamic analysis yields a hybrid technique. In particular, executions may 333
produce existence proofs of properties that cannot be confirmed using static techniques only. 334

Many representations of software (e.g., source code, executables, requirements) may be statically 335
analyzed. Source code analysis, however, is the most mature. Many tools have been developed to 336
analyze software written in specific programming languages. One advantage of source code 337
analysis is that the context of problems identified in source code can be communicated to 338
software developers using a representation (the code itself) that is comprehensible to people. 339
When other representations are analyzed, an additional step is required to render a problem into a 340
form that people can first understand and then relate to a program under analysis. 341

According to Doyle’s assessment [Doyle16], rigorous static analysis is superior in terms of 342
coverage, scalability and benefit for effort. A limitation is that it is difficult to specify some 343
properties in available terms. 344

Formal methods have shown significant applicability in recent years. For example, the Tokeneer 345
project shows [Barnes06, Woodcock10] that software can in some cases be developed with 346
formal methods faster and cheaper and with fewer bugs than with traditional software 347
development techniques. TrustInSoft used Frama-C to prove [Bakker14, Regehr15] the absence 348
of a set of Common Weakness Enumeration (CWE) classes in PolarSSL, now known as mbed 349
TLS. This approach is commonly used, and even mandated, in Europe for software in 350
transportation and nuclear plant control. 351

These developments illustrate a few among the many uses of static analysis. Going forward, 352
static analysis has the potential to efficiently preclude several classes of errors in newly-353
developed software and to reduce the uncertainty regarding resources needed to reach higher 354
levels of assurance through testing. 355

2.1.2 Model Checkers, SAT Solvers and Other “Light Weight” Decision Algorithms 356
These algorithms can answer questions about desirable higher level properties, such as that a 357
protocol only allows sensitive text to be read if one has a key, that security properties are 358
preserved by the system, that an assignment of values satisfies multiple constraints or that there 359
are no paths to breaches via (known) attacks. These algorithms can also be applied to analyze 360
detailed design artifacts, such as finite (and infinite) state machines. 361

Doyle’s assessment [Doyle16] is that model checkers can have excellent coverage and many 362
properties can be represented. Since the effort required increases exponentially with problem 363
size, there is always an effectual size limit, however. Problems smaller than the limit can be 364
solved quickly. Very large problems may require excessive resources or intensive human work to 365
break the problem into reasonable pieces. 366

Such techniques can be applied in essentially two ways. First, they can be used as part of 367
software in production. For instance, instead of an ad-hoc routine to find an efficient route for a 368

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

7

delivery truck, an application can use a well-studied Traveling Salesman or spanning tree 369
algorithm. Second, and perhaps more pertinent to the theme of this report, is to use the 370
algorithms to design or verify software. 371

2.1.3 Directory of Verified Tools and Verified Code 372
Software developers often must expend significant effort to qualify tools or develop program 373
libraries with proven properties. Even when a later developer wishes to use the results of such 374
work, there are no central clearing houses to consult. A list of verified tools, carefully 375
constructed libraries and even reusable specifications and requirements can speed the adoption of 376
formal methods. Such a tool library could facilitate wider use, with accompanying assurance, of 377
software with dramatically reduced numbers of vulnerabilities. 378

Many companies and government agencies evaluate the same tools or the same software for 379
similar uses. Since there is no way to find out who may have done related evaluations, each 380
entity must duplicate the work, sometimes with less knowledge and care than another has already 381
applied. It is especially challenging since many contracts discourage sharing results. [Klass16] A 382
repository or list would be of great benefit. Knowing about related efforts, developers could 383
contribute to one effort, instead of working on their own. 384

For instance, the Open Web Application Security (OWASP) foundation coordinated a project to 385
develop a shared application program interface (API), called Enterprise Security API (ESAPI). 386
The ESAPI toolkit “encapsulate[s] the key security operations most applications need.” 387

See Section 2.4 for a discussion of re-use of well-tested and well-analyzed code. 388

2.1.4 Pragmas, Assertions, Pre- and Postconditions, Invariants, Properties, Contracts and 389
Proof Carrying Code 390

Programmers generally have a body of information that gives them confidence that software will 391
perform as expected. A neglected part of formal methods is to unambiguously record such 392
insights. Variations go by different terms, such as contracts, assertions, preconditions, 393
postconditions and invariants. It cost programmers some thought to state exactly what is going 394
on using a language similar to code expressions, but such statements help. These are activated 395
(“compiled in”) during development and testing, then may be deactivated before release. 396

The benefit is that these formal statements of properties carried in the code may be used to cross 397
check the code. For example, tests may be generated directly from assertions. They may be 398
activated to perform internal consistency checks during testing or production. Faults can 399
therefore be detected much earlier and closer to erroneous code, instead of having to track back 400
from externally visible system failures. Such statements also supply additional information to 401
perform semi-automated proofs of program correctness. Unlike comments, which may not be 402
updated when the code changes, these can be substantiated or enforced by a computer and 403
therefore must continue to be precise statements of program features and attributes. 404

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

8

A striking example of how such formal statements could help is the 1996 failure of the first 405
Ariane 5 rocket launched. The Ariane 5 used software from the successful Ariane 4. Analysis 406
showed that a 16-bit integer could handle Ariane 4 speeds. However, higher Ariane 5 speed 407
values overflowed the variable leading to computer shut down and the loss of the vehicle. If the 408
code had a precondition that the speed must fit in a 16-bit integer, “Any team worth its salt 409
would have checked … [preconditions, which] would have immediately revealed that the Ariane 410
5 calling software did not meet the expectation of the Ariane 4 routines that it called.” 411
[Jézéquel97] 412

2.1.5 Correct-by-Construction and Model-Based Development 413
In model-based development, a software developer creates and modifies a model of a system. 414
Behavior may be specified in a higher-level or domain-specific language or model, and then 415
code is automatically generated. Much or all of the code is generated from the model. This is one 416
correct-by-construction technique. This and others, such as design by refinement, aim to entirely 417
avoid whole classes of vulnerabilities, since the developer rarely touches the code. Code 418
synthesis like this is useful in fewer situations than other formal methods. Such models or 419
specifications may also generate test suites or oracles. They may also be used to validate or 420
monitor system operation. 421

According to Doyle’s assessment [Doyle16], program synthesis has an “A+” in coverage, “B” in 422
effort and properties, but “D” in scalability. When we can specify complete high-level models 423
for entire systems, or even subsystems, we call them languages and cease to consider them 424
unusual, but they represent a very substantial use of formal methods. 425

2.1.6 Maturity Level 426
Formal methods are today used (relatively invisibly) throughout the world. One of the most 427
pervasive applications is the use of strong type checking within modern programming languages. 428
Other, admittedly limited, uses are the algorithms of various software checking tools, some of 429
them built into widely used development environments (e.g., that tag inconsistent use of 430
variables, missing values or use of unsafe interfaces). In 2010, researchers at NICTA 431
demonstrated [Klein14] the formal verification of the L4 microkernel comprising about 10 000 432
lines of C code. 433

2.1.7 Basis for Confidence 434
Assertions, and to a lesser extent, contracts, have been significantly adopted in high-quality 435
software. Their gradual improvement to encompass more advanced condition and API checking 436
is likely because they have already proven themselves in some developer communities. Many 437
tools now perform static analysis. A natural progression is to promote more and more advanced 438
forms of static analysis. Software proving based on techniques such as pre- and post-condition 439
satisfaction and proof carrying code have seen initial adoption in critical software; they require 440
more effort and cost, however, in some use cases they have been shown cost effective in the long 441
run: fewer or no fixes to deployed systems. 442

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

9

2.1.8 Rationale for Potential Impact 443
The greatest potential impact is likely in costs avoided for components that, over time, become 444
heavily relied upon. The heartbleed debacle is an example of a modest code base with outsized 445
importance: a judicious use of formal methods might have avoided the problem in the first place. 446
Generally, higher quality software, such as can be produced using formal methods, can be used 447
to lower long-term maintenance and replacement costs of software components. As noted in 448
[Woody14], unlike physical systems that wear out and eventually fail with greater frequently, 449
software systems generate failures when they are incorrect and the flaws are triggered by 450
environmental factors. 451

2.1.9 Further Reading 452
[Armstrong14] Robert C. Armstrong, Ratish J. Punnoose, Matthew H. Wong and Jackson R. 453
Mayo, “Survey of Existing Tools for Formal Verification,” Sandia National Laboratories report 454
SAND2014-20533, December 2014. Available at http://prod.sandia.gov/techlib/access-455
control.cgi/2014/1420533.pdf 456

[Bjørner16] Nikolaj Bjørner, “SMT Solvers: Foundations and Applications”, Dependable 457
Software Systems Engineering, J. Esparza et. al. eds., pp 24-32, IOS Press, 2016. DOI: 458
10.3233/978-1-61499-627-9-24 459

[Boulanger12] “Industrial Use of Formal Methods: Formal Verification”, Jean-Louis Boulanger 460
(Ed), July 2012, Wiley-ISTE. 461

[Voas16a] Jeffrey Voas and Kim Schaffer, “Insights on Formal Methods in Cybersecurity”, 462
IEEE Computer 49(5):102 – 105, May 2016, DOI: 10.1109/MC.2016.131 463
A roundtable about formal methods with seven experts on formal methods. 464

[Voas16b] Jeffrey Voas and Kim Schaffer, (Insights, part 2), IEEE Computer August 2016 465

[Woodcock09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui and John Fitzgerald, 466
“Formal Methods: Practice and Experience”, ACM Computing Surveys, 41(4), October 2009, 467
Article No. 19, DOI: 10.1145/1592434.1592436. Available at 468
http://homepage.cs.uiowa.edu/~tinelli/classes/181/Fall14/Papers/Wood09.pdf 469

2.2 System Level Security 470

When software is executed, the system context for the running software defines the resources 471
available to the software, the APIs needed to access those resources and how the software may 472
access (and be accessed by) outside entities. These aspects of a system context may strongly 473
affect the likelihood that software contains vulnerabilities (e.g., complex or buggy APIs increase 474
the likelihood), the feasibility of an attacker exploiting vulnerabilities (e.g., more feasible if 475
system services are reachable from outside) and the impact an attack could have (e.g., both 476
damage to system resources and mission-specific costs). 477

http://prod.sandia.gov/techlib/access-control.cgi/2014/1420533.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2014/1420533.pdf
http://homepage.cs.uiowa.edu/%7Etinelli/classes/181/Fall14/Papers/Wood09.pdf

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

10

A long-standing goal of system designers is to build systems that are resistant to attack and that 478
enforce desirable security policies on both programs and users. Started in 1965, the Multics 479
system [Corbato65] combined a number of ideas (e.g., virtual memory, multi-processing, 480
memory segments) to implement a computing utility that could protect information from 481
unauthorized access by programs and users. Starting in the 1970s, a number of security policy 482
models were introduced to formalize the security responsibilities of the system layer. In 1976, 483
the Bell-Lapadula (BLP) model [Bell76] provided a formal expression of mandatory security for 484
protecting classified information: the BLP model allowed “high” (e.g., SECRET) processes 485
access to “low” (e.g., UNCLASSIFIED) information for usability but prevented “low” processes 486
from accessing “high” information. The noninterference model of [Goguen84] accounted for 487
indirect information flows, also known as covert channels. Biba’s integrity model expressed 488
[Biba77] mandatory security for integrity: it prevented possibly-malicious (low-integrity) data 489
from being observed by high-integrity processes, thus reducing the risk that high-integrity 490
processing and data might become corrupted. The type enforcement model of [Boebert85] 491
provided a table-based access control mechanism to allow data to be transformed only by pre-492
approved programs. These security policy models provided necessary clarity regarding desirable 493
security properties, but using the models in real-scale systems posed usability problems for 494
system administrators, and software implementations of the models still contained exploitable 495
flaws. 496

In 1999, DARPA started the Intrusion Tolerant Systems (ITS) program predicated on the notion 497
that systems can be built to operate through, or “tolerate,” even successful attacks. A number of 498
other research programs followed that built on this idea. [Tolerant07] Essential concepts 499
explored by these programs included the structuring of systems with redundant and diverse 500
components unlikely to all be subverted by a single vulnerability, the introduction of new policy-501
enforcing software layers and the use of diagnostic reasoning components for automated 502
recovery. The DARPA research thrust in tolerant systems recognized that the elimination of all 503
vulnerabilities from real-world systems is an unlikely achievement for the foreseeable future. 504
The research demonstrated substantial tolerance in red team testing (e.g., see [Pal05]), but the 505
approaches also imposed significant configuration complexity, reduced execution speed and 506
significantly increased resource (cpu, memory, etc.) requirements. 507

Recent advances, both in hardware and software, raise the possibility of developing security-508
enforcing and intrusion tolerant systems that are both performance and cost effective. Such 509
systems have the potential to suppress the harms that software vulnerabilities can cause. On the 510
hardware side, the low cost multicore and system-on-a-chip processors are lowering the costs of 511
redundancy. On the complementary software side, emerging architectural patterns are offering a 512
new opportunity to build security and tolerance into the next generation of systems. Among 513
numerous possible patterns, two that appear promising are operating system containers and 514
microservices. 515

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

11

2.2.1 Operating System Containers 516
“A container is an object isolating some resources of the host, for the application or system 517
running in it.” [LXC] A container is, in essence, a very light weight virtual machine whose 518
resources (memory, disk, network) can be very flexibly shared with a host computer or other 519
containers. A container provides some of the isolation properties of an independent computer, 520
but a container can be launched in a fraction of a second on commodity hardware. 521

Container-based isolation can clearly reduce the impact of software vulnerabilities if the isolation 522
is strong enough. Container configurations, however, are complex: they determine numerous 523
critical elements of a container, such as how it shares its resources, how its network stack is 524
configured, its initial process, the system calls it can use and more. Although the market has 525
already embraced management systems, such as Docker [Docker16], that support the sharing of 526
container configurations, there is a need for tools and techniques that can analyze container 527
configurations and determine the extent to which they reduce security risk, including, e.g., the 528
extent to which they can mitigate the effects of software vulnerabilities. 529

Additionally, containers offer an opportunity to apply some of the traditional security models and 530
intrusion tolerance techniques using building blocks that favor efficiency and ease of 531
deployment. There is now a new opportunity to reevaluate which advanced security models and 532
intrusion tolerance techniques can become mainstream technologies. 533

Furthermore, because a container can be efficiently wrapped around a single run of a program, a 534
container might be configured to grant a program only the minimum level of access to resources, 535
thus following the principle of least privilege [Saltzer75]. Least privilege is a fundamental 536
principle for limiting the effects of software vulnerabilities and attacks. It is notoriously difficult, 537
however, to specify the minimal resources that a program requires. Rather than trying to solve 538
the problem in its full generality, one strategy is to develop analysis techniques/tools to generate 539
custom container configurations that approximate least-privilege for important classes of 540
programs. Due to the relative ease of deploying containers, such tool-assisted containers could 541
bring much more effective access control and safety to mainstream systems. 542

2.2.2 Microservices 543
Microservices describe “An approach to designing software as a suite of small services, each 544
running in its own process and communicating with lightweight mechanisms.” [Fowler14] The 545
essential microservices idea is not new: it has been explored using web services and in operating 546
systems based on microkernels such as the Mach microkernel [Rashid86], the GNU Hurd 547
[Hurd16] and the Web Services Architecture [WSA04]. The microservices approach, however, 548
structures services according to different criteria. As explained in [Fowler14], microservices 549
should implement individual business (or mission) capabilities, have independent refresh cycles, 550
be relatively easy to replace and be programming-language agnostic. In short, each microservice 551
should make economic and management sense on its own. At the same time, microservices may 552
rely on one another, which can support well-defined modularity. 553

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

12

This approach to system structure can result in a number of components whose interfaces are 554
explicitly defined and whose dependencies are similarly explicitly defined. 555

As a system operates and the flow of control passes between microservices, there is a natural 556
incentive to “batch up” inter-service communications to amortize boundary-crossing overheads. 557
While this kind of batching can increase latencies in some cases, it can also simplify inter-558
component dependencies and possibly reduce the likelihood of software flaws and hence 559
vulnerabilities. 560

The deployment of software as collections of microservices raises a fundamental question: does 561
it make sense to build a “trusted microservice”? Even more ambitiously, would it be feasible to 562
develop microservices that are themselves reference monitors? The reference monitor concept 563
dates from the 1972 Anderson Report [Anderson72] and refers to a system component that 564
mediates all accesses to resources that it provides. A reference monitor is: 1) always invoked, 2) 565
tamperproof and 3) verified (i.e., small enough to be built with high assurance). As microservices 566
are becoming increasingly popular, the time may be right to research criteria for formulating 567
microservices that are trustworthy, or that are reference monitors, and to understand the security 568
limitations of the microservices architectural pattern. 569

By making component dependencies and interactions more explicit, microservices appear to 570
offer a new opportunity for interposition-based security enhancements. Wrapping layers inserted 571
between microservice interactions would have the power to augment, transform, deny and 572
monitor those interactions. Those powers could be used to restrict potential damage from 573
software vulnerabilities, but interposition can also destabilize systems and impose slowdowns. A 574
possible research thrust is to investigate interposition strategies that are compatible with 575
microservice based systems. 576

2.2.3 Maturity Level 577
Virtualization systems date from the 1960s. The LXC container form of virtualization began in 578
2008 and has been under active development since. A number of alternate lightweight 579
virtualization systems exist, for example BSD Jails, OpenVZ and Oracle Solaris Zones. 580
Containers are substantially deployed in clouds and on servers. 581

The current microservices terminology and design goals emerged by 2014. Earlier formulations, 582
such as tasks running on microkernels, predate the CMU Mach project’s initiation in 1985. Since 583
then, microkernel technology has been a subject of ongoing research and has been integrated into 584
significant commercial products, notably Apple’s OS X. 585

2.2.4 Basis for Confidence 586
The base technologies are widely used, and there is a recognized need for more automation in the 587
configuration of containers. So there could be demand pull. Because containers can be very 588
quickly created, tested and deleted, there is a good case that extensive testing could be done on 589
container configurations in a semi-automated manner. With respect to microservices, a growing 590

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

13

number of microservice frameworks indicates that the technology is growing in its popularity 591
and also that there is still room for enriching new microservices frameworks and for having the 592
enrichments adopted. Also, the modular nature of microservices may offer a pathway for 593
deploying more secure versions of microservices without significantly disrupting service to 594
clients. 595

2.2.5 Rational for Potential Impact 596
Operating system containers and microservices are already a significant part of the national 597
information infrastructure. Given the clear manageability, cost and performance advantages of 598
using them, it is reasonable to expect their use to continue to expand. Security-enhanced versions 599
of these technologies, if adopted, can therefore have a wide-spread effect on the exploitation of 600
software vulnerabilities. 601

2.2.6 Further Reading 602
[Fowler14] Martin Fowler, “Microservices: a definition of this new architectural term”, 603
http://martinfowler.com/articles/microservices.html, March 2014 604

[What] “What’s LXC?”, https://linuxcontainers.org/lxc/introduction/ 605

[Lemon13] Lemon, “Getting Started with LXC on an Ubuntu 13.04 VPS”, 606
https://www.digitalocean.com/community/tutorials/getting-started-with-lxc-on-an-ubuntu-13-04-607
vps, August 2013. 608

2.3 Additive Software Analysis Techniques 609

Currently there are many different tools and techniques, both as open source and in commercial 610
products, to analyze software, and they check for myriad problems. Many of them can by 611
executed through a general Integrated Development Environment (IDE), such as Eclipse. But 612
current tools face a number of impediments. IDEs sometimes do not offer an “information bus” 613
for tools to share software properties. Each tool must do its own parsing, build its own abstract 614
syntax tree (AST), list variables with their scopes and attributes and “decorate” an AST with 615
proven facts or invariants. Some tools are built on a common infrastructure, like LLVM or 616
ROSE [Rose16], so they share code, but they must still do much of the analysis over again. In 617
addition, there are few standards that allow, say, one parser to be swapped out for a new parser 618
that runs faster. 619

Additive software analysis refers to a comprehensive approach for addressing impediments to the 620
use of multiple advanced software checking tools. The goal of additive software analysis is to 621
foster a continuing accumulation of highly-usable analysis modules that add together over time 622
to continually improve the state of the art in deployed software analysis. Additive Software 623
Analysis has three parts. First, it is documentary standards to allow algorithms and tools to 624
exchange information about software. Second, it is a framework or architecture to enable 625
modular and distributed development of software assurance and assessment tools. This 626

http://martinfowler.com/articles/microservices.html
https://linuxcontainers.org/lxc/introduction/
https://www.digitalocean.com/community/tutorials/getting-started-with-lxc-on-an-ubuntu-13-04-vps
https://www.digitalocean.com/community/tutorials/getting-started-with-lxc-on-an-ubuntu-13-04-vps

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

14

framework has a function similar to the Knowledge Discovery Metamodel (KDM) [KDM15] or 627
what is termed a black board in Artificial Intelligence (AI). Third, it is conceptual approaches to 628
aggregate, correlate or synthesize the results and capabilities of tools and algorithms. A key 629
output of additive software analysis will be a new generation of user-facing tools to readily 630
combine the outputs from different tools and techniques into unified, more comprehensive 631
assessments of a piece of software. 632

A comprehensive additive software analysis capability must facilitate tools working together 633
(hence, it must include standards), must provide building blocks to jumpstart new tool 634
development (hence, it must include a framework) and must facilitate integration and 635
interoperability among tools (hence, it must include techniques to combine analysis results). 636

2.3.1 Software Information Expression and Exchange Standards 637
Software assurance tools derive and store an enormous variety of information about programs. 638
Unfortunately, there is no widely-accepted standard for exact definitions of the information or 639
how it might be stored. Because of the lack of standards, developers must perform heroic feats to 640
exchange information with fidelity between different analysis tools and algorithms. 641

Merely passing bits back and forth between tools is of little benefit unless those bits convey 642
information that is understood the same way by tools. For example, “error,” “fault,” “failure,” 643
“weakness,” “bug” and “vulnerability” are related, but different, concepts. Without a standard, if 644
one tool reports a bug, another tool may understand “bug” to indicate a higher (or lower!) 645
potential for successful attack than the first tool’s assessment. 646

For example, a variety of kinds of formally defined information may be relevant for analyzing a 647
program: 648

• location in code. 649
• the variables that are visible at a certain location, with the variable types. 650
• possible values of variables at a certain location. This may include relations between the 651

values of variables, such as x < y. 652
• call traces and paths, that is, all possible ways to reach this point. 653
• attribution to source code locations for chunks of binaries and executables. 654
• possible weaknesses, e.g., possible BOF [Bojanova16], or the input that will be used in 655

an SQL query not filtered and therefore tainted. 656
• assertions, weakest preconditions, invariants and so forth. 657
• function signatures, including parameter types. 658

Program analysis can be applied at various stages of software development and to 659
representations of a program at different levels of abstraction. For instance, tools may operate on 660
the static structure of a program, such as its abstract syntax tree (AST), on representations that 661
represent data or control flow and even on semantic representations that encode functional 662
behaviors, such as weakest preconditions. We look at each of these categories in turn below. 663

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

15

Abstract Representation: Early static checkers usually had to include their own parsers for 664
building an AST to analyze. However, compiler writers realized the importance of developing 665
common intermediate representations (IRs) that are well-documented and easily accessible. For 666
instance, in version 4.0, the development team of the GNU compiler, gcc, [GCC16] introduced 667
the intermediate language GENERIC, which is a language-independent format for representing 668
source programs in any of several languages. As another example, the Clang compiler [Clang] 669
provides a well-documented AST that may be either directly accessed by third-party plugins or 670
saved in a common format, such as JSON, to be processed by third-party analysis tools. Other 671
compilers that provide well-documented interchange formats include Frama-C [FramaC] and the 672
ROSE compiler infrastructure [Rose16]. 673

Compiler Intermediate Representation: Tools may perform in-depth analyses on intermediate 674
representations (IRs) that are closer to the final executable code generated by compilers. For 675
instance, the GNU compiler defines the GIMPLE format in which the original source program is 676
broken down into a simple three-address language. Similarly, the Clang compiler provides the 677
LLVM bitcode representation, a kind of typed assembly language format that is not tied to a 678
specific processor. 679

Semantic Representations: Tools that check functional correctness properties typically need a 680
representation that is more suited to expressing logical program properties than the 681
representations discussed above. While such representations are not as mature as ASTs and 682
compiler IRs, a few have gained popularity in recent years. For instance, the intermediate 683
verification language Boogie [Barnett05], which provides features such as parametric 684
polymorphism, universal and existential quantification, nondeterministic choice and partial 685
orderings, has become a popular backend for sophisticated checkers of both low-level languages, 686
like C and C++, and higher-level object-oriented languages, like Eiffel and C#. Boogie programs 687
can be translated into the SMT-LIB format [SMTLIB15], which allows them to be checked with 688
any theorem prover that accepts the SMT-LIB format. Another example of a common language 689
for semantic representations is Datalog [Whaley05], which has been used to build a variety of 690
tools for checking array bound overflows, finding race conditions in multithreaded programs and 691
checking web application security. 692

2.3.2 Tool Development Framework or Architecture 693
To foster new tool development, additive software analysis requires initial building blocks. The 694
key initial building block is a framework that can tie the capabilities of tools or techniques 695
together. Just like Eclipse greatly facilitates the improvement of IDE technology for developing 696
code, a framework for additive software analysis will aim to enable synergistic development of 697
software assurance and testing tools. This “framework” may be a separate tool, or it may be a 698
plugin or update to an existing IDE. 699

Broadly speaking, there are two common methods for frameworks to transmit information 700
between program analysis tools. The first is to integrate a checker as a plugin into an existing 701

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

16

compiler toolchain. Modern compiler frameworks like gcc, Clang and Frama-C make it easy to 702
write new plugins. Furthermore, plugins are often allowed to update an AST or intermediate 703
form, thus allowing plugins to make the results of their analysis available for use by other 704
plugins. For instance, the Frama-C compiler framework provides a library of plugins that 705
includes use-def and pointer-alias analyses that are often necessary for writing semantic 706
analyzers. The second method relies on a common format that is written to disk or sent via 707
network to pass information. An example of this is the Evidential Tool Bus [Rushby05] that 708
allows multiple analysis engines produced by different vendors to exchange logical conclusions 709
in order to perform sophisticated program analyses. An additive framework would support both 710
information transmission approaches in order to reuse existing efforts as much as possible. 711

The framework capabilities referred to in this section focus on information exchange among 712
tools, rather than development capabilities of frameworks discussed in Section 2.4. 713

2.3.3 Combining Analysis Results 714
With standards in place and a framework, we can get increased benefit by adding together or 715
combining different software analyses. There are three general ways that results of software 716
analysis can be added together. The first case is simply more information. Suppose the 717
programmer already has a tool to check for injection class (INJ) bugs [Bojanova16]. Adding a 718
tool to check for deadlocks could give the programmer more information. 719

The second case is confirmatory. The programmer may have two different heuristics to find 720
faulty operation (FOP) bugs [Bojanova16] that have independent chances of reporting true FOP 721
bugs and false positives. The framework could be used to correlate the outputs of the two 722
heuristics to produce a single result with fewer false positives. 723

The third case of additive software analysis is synergy. A research group with expertise in formal 724
reasoning about memory use and data structures can build upon a component developed by a 725
group that specializes in “parsing” binary code, thus creating a tool that reasons about the 726
memory use of binaries. Developers can experiment with hybrid and concolic assurance tools 727
more quickly. For instance, a tool may use a static analyzer to get the code locations that may 728
have problems then, using constraint satisfiers and symbolic execution, create inputs that trigger 729
a failure at each location. 730

2.3.4 Maturity Level 731
Many commonly used compilers, such as gcc, Clang and Frama-C, provide built-in support for 732
adding plugins that process and update AST and IR representations. Additionally, large 733
communities have developed extensive libraries of plugins and created wiki sites with tutorials 734
and reference manuals that lower the bar for new users to become involved. In the case of 735
semantic representations, the communities are smaller and the bar to entry is higher, though 736
languages like Boogie have been successfully used as the engine by several research groups for 737

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

17

building checkers for diverse languages like C [VCC13], Eiffel [Tschannen11] and even an 738
operating system [Yang10]. 739

There are many current software information exchange systems, such as LLVM, ROSE, gcc’s 740
GENERIC or GIMPLE and the Knowledge Discovery Metamodel (KDM). Efforts to consolidate 741
the output of tools, such as Tool Output Integration Framework (TOIF), Software Assurance 742
Findings Expression Schema (SAFES) [Barnum12] and Code Dx [CodeDx15], already 743
implicitly indicate classes of kinds of useful knowledge about software. 744

2.3.5 Basis for Confidence 745
The leading static analysis tools today have low false positive rates, which has led to increasing 746
adoption throughout industry and government organizations. This in turn has motivated compiler 747
teams to add support for plugins that can operate on internal program representations. There are 748
large and active user communities that are documenting interfaces and creating libraries of 749
plugins that can be combined to build complex analyzers. Indeed, the challenge is not whether an 750
additive software analysis approach might work, but in which to invest and how to tie them 751
together. 752

2.3.6 Rationale for Potential Impact 753
Early static analysis tools checked mostly syntactic properties of programs, enforcing coding 754
guidelines and looking for patterns that corresponded to simple runtime errors such as 755
dereferencing a null pointer or using a variable before assignment. As analyzers became more 756
sophisticated, they increasingly relied on more complex analyses of program structure and data 757
flow. Common frameworks that allow users to build small analysis engines that can share and 758
combine results will make it possible to build sophisticated analyzers that can find subtle errors 759
that are hard to find using traditional testing and simulation techniques. 760

Such frameworks and standards should allow modular and distributed development and permit 761
existing modules to be replaced by superior ones. They should also facilitate synergy between 762
groups of researchers. They should accelerate the growth of an “ecosystem” for tools and the 763
development of next generation “hybrid” tools. A hybrid tool might use a static analyzer module 764
to find problematic code locations, then use a constraint satisfier module and a symbolic 765
execution engine to create inputs that trigger failures. A growing, shared set of problematic and 766
virtuous programming patterns and idioms may ultimately be checked by tools [Kastrinis14]. 767

2.3.7 Further Reading 768
[Bojanova16] Irena Bojanova, Paul E. Black, Yaacov Yesha and Yan Wu, “The Bugs 769
Framework (BF): A Structured Approach to Express Bugs,” 2016 IEEE Int’l Conf. on Software 770
Quality, Reliability, and Security (QRS 2016), Vienna, Austria, August 1-3, 2016. Available at 771
https://samate.nist.gov/BF, accessed 12 September 2016. 772

https://samate.nist.gov/BF

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

18

[Kastrinis14] G. Kastrinis and Y. Smaragdakis, “Hybrid Context-Sensitivity for Points-To 773
Analysis,” Proc. Conference on Programming Language Design and Implementation (PLDI), 774
2014 775

[Rushby05] John Rushby, “An Evidential Tool Bus,” Proc. International Conference on Formal 776
Engineering Methods, 2005. 777

2.4 More Mature Domain-Specific Software Development Frameworks 778

Briefly stated, the goal of this approach is to promote the use (and reuse) of well-tested, well-779
analyzed code, and thus to reduce the incidence of exploitable vulnerabilities. 780

The idea of reusable software components, organized into component libraries or repositories as 781
mentioned in Sect. 4.3.6, dates from at least 1968 [Mcilroy68]. To make software reusable, 782
sharable software components can be packaged in a variety of building blocks, for example: 783
standalone programs, services, micro-services, modules, plugins, libraries of functions, 784
frameworks, classes and macro definitions. A set of such (legacy) building blocks typically 785
forms the starting point for new software development efforts. Or, more colloquially expressed: 786
hardly anything is created from scratch. The vulnerability of new software systems, therefore, 787
depends crucially on the selection and application of the most appropriate existing components 788
and on the interaction of new code with legacy components. 789

Although the unit of code sharing can be small, e.g., a single function or macro, there are 790
substantial benefits to using mature, high-value, components where significant investments have 791
already been made in design cleanliness, domain knowledge and code quality. 792

A software framework contains code and, importantly, also defines a software architecture 793
(including default behavior and flow of control) for programs built using it. A domain-specific 794
framework furthermore includes domain knowledge, e.g., GUI building, parsing, Web 795
applications, multimedia, scheduling. A mature domain-specific framework, once learned by 796
software developers, can enable quick production of programs that are well tested both from a 797
software perspective and from a domain knowledge perspective. In the best case, where a mature 798
framework is wielded properly by experts, there is a substantial opportunity to avoid software 799
mistakes that can result in exploitable vulnerabilities. 800

Unfortunately, the best case is difficult to achieve. Specifically, in order to realize the benefits of 801
mature frameworks, software developers must overcome several significant challenges. 802

Finding Suitable Frameworks. A plethora of frameworks exist. For example, a simple search 803
of github.com in September 2016 showed over 171 000 repositories having the word 804
“framework” either in their name or in their description string. The frameworks are implemented 805
in a wide variety of programming languages (PHP, JavaScript, Java, Python, C#, C++, etc.), and 806
many frameworks use multiple languages. Additional complexity results from a diversity of 807
package management and build systems that must be learned by potential framework clients. 808

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

19

Software development teams confront a significant challenge merely to survey the possible 809
frameworks that might support a project’s requirements; the challenge is acute enough that there 810
is one project [TodoMVC16] that exists solely to help developers choose among available 811
(model-view) frameworks by showing a sample application implemented in multiple 812
frameworks, for comparison purposes. Assessing suitability in surveyed frameworks is a further 813
challenge. Many frameworks include some form of testing in their build processes, often unit 814
testing [Beck94]; such existing tests need to be assessed for sufficiency relative to a project’s 815
goals. 816

Learning new Frameworks. Brooks said [Brooks95] that software embodies both “essential” 817
and “accidental” information. The essential information is about algorithms and fundamental 818
operations that software must perform. The accidental information is about interface details, 819
programming language selection, the names given to elements in a system, etc. Each framework 820
embodies both kinds of information, which must be understood at an expert level to safely 821
employ a framework for nontrivial applications. While an expert might already know much 822
essential information for a problem domain, the accidental information cannot be anticipated. 823

A quick perusal of a common data structure, the list, illustrates the fundamental difficulty. The 824
meaning of a list is well understood by most software developers, but the information required to 825
actually create and use a list data structure is quite different between competing environments. 826
For example, the Unix queue.h macros, Java collections, JavaScript arrays, Python’s built-in list 827
and the C++ Standard Template Library list template, all implement the same basic idea, but 828
using quite different details. A software developer may be an expert in the concept of a list and 829
in some list implementations, but an absolute novice in the usage of the concrete list 830
implementation in a new framework. The developer must therefore expend time for the 831
unedifying learning of (often extensive amounts of) accidental information. If developers give in 832
to schedule pressure to minimize this preparatory work, novice-level framework-based software 833
may be produced, which is more likely to contain flaws and vulnerabilities. 834

Understanding and Controlling Dependencies. One framework may depend on others. The 835
resulting transitive graph of dependencies can be large, and framework users may easily find the 836
vulnerabilities in their projects dependent on possibly voluminous framework code included 837
automatically and indirectly by legacy package managers and build systems. The left-pad 838
incident of 2016 illustrates the danger. The heavily-used Node Package Manager maintains 839
numerous packages that JavaScript programs can easily refer to and use. When an ownership 840
controversy erupted in 2016, an Open Source author unpublished over 250 of his modules from 841
the Node Package Manager. One was the tiny function “leftpad,” which adds padding of spaces 842
or zeros to strings. Thousands of programs, some very important, relied on leftpad and suddenly 843
failed until the unpublished package was “un-unpublished.” [Williams16] 844

Resolving Framework Composition Incompatibility. Multiple frameworks may not be usable 845
simultaneously in the same program. Or, if they are, the order of their inclusion or the version 846

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

20

may be important, resulting in brittle code. In other cases, like the lex/yacc code generation tools, 847
explicit actions are needed to avoid name space conflicts in order to allow multiple instances of a 848
framework to coexist in a program. Such conflicts may be subtle. As Lampson points out 849
[Lampson04], each component may have a distinct “world view” and the composition of n 850
components can result in n2 interactions. 851

These are long-standing challenges. Moreover, due to the large and growing number of 852
frameworks (of varying provenance and quality) currently available in Open Source via public 853
repositories hosted by repository-management entities such as GitHub, JIRA, Bitbucket, 854
CollabNet, etc., the difficulty of choosing a suitable framework may be more acute. This scale, 855
however, also represents an important opportunity: if even small improvements can be achieved 856
to how frameworks are found, learned, dependency-managed and composed, many software 857
vulnerabilities may be avoided. 858

A second significant development is the mainstreaming of software development (including 859
framework use) through copy/paste operations using software question/answer sites such as 860
stackoverflow or stackexchange. Although question/answer-based code reuse can be fast, it also 861
can result in poorly-understood and poorly-integrated solutions. The ability to get answers and 862
sample code for questions posed clearly can benefit developer comprehension, however 863
techniques are needed to avoid generating vulnerabilities when adapting others’ solutions. 864

Although these are significant challenges, the current state of the art provides opportunities to 865
leverage existing code and skills resources while augmenting them with new techniques and 866
tools. 867

2.4.1 Rapid Framework Adoption 868
Framework adoption is clearly impeded by the need to learn great quantities of accidental 869
information. Gabriel defines “habitability” as “the characteristic of source code that enables 870
programmers, coders, bug-fixers, and people coming to the code later in its life to understand its 871
construction and intentions and to change it comfortably and confidently.” [Gabriel96] 872
Recognizing the challenge of achieving habitability, Gabriel suggests the use of software 873
patterns to help developers quickly understand existing code, as well as to flag the use of 874
negative practices. Although not a panacea, patterns (e.g. [Gamma95]) can help bridge the 875
conceptual gap between framework providers and framework consumers. One approach to 876
facilitating this is to develop a set of patterns that encompass popular domains. An informal 877
survey in September 2016 of the top 10 most popular (“star’d”) and most “forked” repositories 878
on GitHub shows significant framework activity around Web application development, Front-879
end Web development, operating system kernels, cross platform application frameworks, virtual 880
machine management, programming languages and asynchronous http servers. One approach to 881
speeding adoption is to formulate software patterns for some of these domains, with a focus on 882
harmonizing the accidental information between frameworks (so it need not be learned multiple 883
times) and to produce documentation for common use cases. Experiments can then measure the 884

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

21

effectiveness by comparing framework uptake both with and without the new pattern 885
information. 886

2.4.2 Compositional Testing 887
Advanced testing approaches hold promise to substantially increase framework robustness, and 888
furthermore, to build assurance for compositions of frameworks under various assumptions 889
regarding dependencies. Many frameworks currently employ only ad hoc testing. Others employ 890
standard unit testing [Beck94], practiced at varying levels of completeness. Recent advances in 891
the measurement of traditional test suite coverage provide an opportunity to compare 892
frameworks. Combinatorial testing [Kuhn10] has been used to improve on black box fuzz testing 893
as well as to test alternate software configurations. The many ways in which frameworks may be 894
customized or configured suggest a possible approach for gaining new confidence in the use of 895
software frameworks. By demonstrating high quality compositions, such testing also has 896
potential to highlight framework similarities, reduce learning curves and enable broader adoption 897
of well-tested, well-analyzed code. 898

2.4.3 Conflict Resolution in Multi-Framework Composition 899
In some cases, multiple frameworks can be used together concurrently without conflict. In 900
others, the composition details that allow concurrent use may be fragile. Dominant framework 901
patterns such as inversion of control (IoC) [Busoli07], also known as the Hollywood principle: 902
“don’t call us; we’ll call you,” may exacerbate this because each framework may assume that it 903
is defining the flow of control in an entire application. One approach for mitigating this is to 904
virtualize framework operations using, for example, lightweight operating system containers 905
[LXC] and then establish communication links between concurrently executing frameworks. 906
Another approach to conflict resolution is to employ software translation to rewrite frameworks 907
so that their overlapping elements become distinct. Pilot efforts can demonstrate the feasibility of 908
these and other deconfliction strategies and compare their costs and effects on application 909
vulnerability. 910

2.4.4 Maturity Level 911
The literature of software patterns is quite extensive and software testing is a relatively mature 912
subfield of computer science, practiced now for over 40 years. Frameworks themselves are now 913
a dominant unit of software sharing. The three supporting techniques listed in this section are 914
under continuous use and refinement. 915

2.4.5 Basis for Confidence 916
There is little doubt that patterns can be documented for several significant frameworks; rapid 917
uptake may be a more incremental than revolutionary improvement, but incremental 918
improvements should flow from investments in pattern documentation. The advanced testing 919
techniques that would be brought to bear on framework compositions, are relatively mature, 920
increasing confidence that framework integrations can be effectively tested. 921

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

22

2.4.6 Rational for Potential Impact 922
Code reuse is pervasive and seemingly accelerating; by investing in very popular frameworks, 923
any improvements will be widely relevant. 924

2.4.7 Further Reading 925
[Software16] “Software framework”, https://en.wikipedia.org/wiki/Software_framework 926

[TodoMVC16] “TodoMVC: Helping you select an MV* framework”, http://todomvc.com/ 927

[Wayner15] Peter Wayner, “7 reasons why frameworks are the new programming languages”, 928
http://www.infoworld.com/article/2902242/application-development/7-reasons-why-929
frameworks-are-the-new-programming-languages.html, March 2015. 930

2.5 Moving Target Defenses (MTD) and Artificial Diversity 931

This approach is a collection of techniques to vary software’s detailed structures and properties 932
such that an attacker has much greater difficulty exploiting any vulnerability. To illustrate, 933
consider one early, widely-used technique in this family: Address Space Layout Randomization 934
(ASLR), invented in 2001 by the PaX Team [PaX01]. When a program requests a buffer, the 935
easiest thing is to return the next available chunk of memory. This puts buffers in the same 936
relative location. Knowing this, an attacker can exploit a buffer overflow weakness (BOF) 937
[Bojanova16] in one buffer to, say, read the password that is in another buffer that is always 384 938
bytes beyond it. ASLR puts buffers in different (unpredictable) relative locations, so that the 939
above exploit is much harder. 940

The goal of artificial diversity and moving target defense (MTD) is to reduce an attacker's ability 941
to exploit vulnerabilities in software, not to reduce the number of weaknesses in software. 942

Diversification must, of course, be safe. That is, changes have no effect on normal behavior, 943
other than perhaps higher use of resources. Even with this constraint we can trade compute 944
power for increased granularity or thoroughness of diversification. The increased granularity is 945
presumed to offer better protection against exploitation of unknown vulnerabilities because of 946
the higher probability of affecting the location or value of some piece of information essential to 947
an attack. This tradeoff is similar to that for static analysis, referred to in Sect. 2.1.1 and 2.1.2: 948
the more resource invested, the higher the amount of assurance. The difference is that static 949
analysis provides assurance that the software does not contain vulnerabilities of specific types, 950
while MTD provides assurance that weaknesses of any type are expensive to exploit. 951

2.5.1 Compile-Time Techniques 952
Compile-time techniques are those applied automatically by a compiler. They may result in the 953
same executable for each compilation, such that the executable then chooses random behaviors 954
or memory layouts at run time, or they may result in a different executable at each compilation. 955

https://en.wikipedia.org/wiki/Software_framework
http://todomvc.com/
http://www.infoworld.com/article/2902242/application-development/7-reasons-why-frameworks-are-the-new-programming-languages.html
http://www.infoworld.com/article/2902242/application-development/7-reasons-why-frameworks-are-the-new-programming-languages.html

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

23

Some specific techniques are data structure layout randomization, different orders of parameters 956
in function calls, ASLR, instruction set randomization, data value randomization, application 957
keyword tagging and varied instruction ordering with operation obfuscation and refactoring. 958

The program information that is useful for proving that these diversifications are safe is also 959
useful for program analysis to find or remove vulnerabilities. The additive software analysis 960
approach, detailed in Sect. 2.3, is to use the same compute power to simultaneously detect or 961
remove weaknesses and to also randomize remaining weaknesses. These diversification 962
techniques could be tied into a static analysis tool through the additive analysis framework, 963
potentially with very modest resource expenditures. 964

Unfortunately, no tools do this today. Analysis software is usually run by the programmer, at 965
development time. Diversification typically only displays its benefit in the system test phase or 966
in the operation phase when it demonstrates resilience. At worst, diversification adds ambiguity 967
to test results and makes it more difficult to track down root causes of failures. To counteract this 968
disconnect between effort and benefit, programs that use diversification should be specifically 969
acknowledged, so customers know that they employ an extra layer of resilience. 970

2.5.2 System or Network Techniques 971
Some techniques at the system or network level are network address space randomization and 972
protocol diversity. These are likely to be dynamic in that they change on a regular basis. In many 973
cases, these are built on the assumption of a shared secret map from services to address or a 974
shared secret key, so an application can authenticate and get current information. 975

2.5.3 Operating System Techniques 976
An operating system (OS) may present different interfaces to different processes. These could be 977
dynamic, such as a random interrupt number assigned for each system service, or static, in which 978
the OS has several choices for each set of services. In the dynamic case, the linker/loader can 979
adjust each new executable to the assignments made for the process. As an example of the static 980
case, an OS presents a new process with a set C of memory management APIs, a set B of process 981
services, a set D of networking functions and a set A of I/O calls. Invasive code trying to execute 982
through that process would have to deal with j × k × m × n different OS interfaces in order to 983
succeed. 984

2.5.4 Maturity Level 985
Some moving target defenses are the default in many operating systems and compilers today. 986
There is intense research and entire conferences to understand limitations, costs and benefits of 987
current techniques and develop new and better techniques. 988

2.5.5 Basis for Confidence 989
The benefit in terms of number of attacks foiled, attackers discouraged or additional attacker 990
resources required is not known. However, many MTD techniques can be applied automatically, 991
e.g. by the compiler, at little cost of resources or run time. 992

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

24

2.5.6 Rationale for Potential Impact 993
MTD techniques can be applied to most programs and systems today, even static embedded 994
systems. Thus the scope of benefits is extremely large. The impact is not clear since most 995
techniques increase attacker’s costs, not strictly eliminate vulnerabilities. 996

2.5.7 Further Reading 997
[Okhravi13] H. Okhravi, M.A. Rabe, T.J. Mayberry, W.G. Leonard, T.R. Hobson, D. Bigelow 998
and W.W. Streilein, “Survey of Cyber Moving Targets”, Massachusetts Institute of Technology 999
Lincoln Laboratory, Technical Report 1166, September 2013. Available at 1000
https://www.ll.mit.edu/mission/cybersec/publications/publication-1001
files/full_papers/2013_09_23_OkhraviH_TR_FP.pdf Accessed 15 September 2015. 1002

 1003

https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2013_09_23_OkhraviH_TR_FP.pdf
https://www.ll.mit.edu/mission/cybersec/publications/publication-files/full_papers/2013_09_23_OkhraviH_TR_FP.pdf

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

25

3 Measures and Metrics 1004
This section deals with metrics, measures, assessments, appraisals, judgements, evaluations, etc. 1005
in the broadest sense. Hence, code reviews and software testing have a place in this section. We 1006
have three areas of concern. First, encouraging the use of metrics. All the extraordinary metrics 1007
in the world do not help if nobody uses them. Also, nobody can act on metrics if the metrics are 1008
not produced and available. The Federal Government might motivate and encourage the use of 1009
software product metrics. Vehicles include procurement, contracting, liability, insurance and also 1010
standards as explained in Sect. 4.3. Software can also benefit from the programs and criteria of 1011
third-party, non-governmental organizations. Some possibilities are Underwriter’s Laboratory 1012
Cybersecurity Assurance Program (CAP), Consortium for IT Software Quality (CISQ) Code 1013
Quality Standards, Coverity Scan, Core Infrastructure Initiative (CII) Best Practices badge and 1014
the Building Security In Maturity Model (BSIMM). Many of these include process metrics, 1015
which is the second area. 1016

The second area, process metrics includes hours of effort, number of changes with no acceptance 1017
test defects or acceptance test defect density in delivered code [Perini16]. These do not have a 1018
direct effect on the number of vulnerabilities, but the indirect effects are significant. For 1019
example, if developers are forced to frequently work overtime to meet a deadline or the schedule 1020
doesn’t allow for training, the number of vulnerabilities is likely to be much higher. Other 1021
examples are software measures that indicate how much a new process step helps compared to 1022
the former practice or metrics that indicate parts of the process that are allowing vulnerabilities 1023
to escape. This approach of continuously improving the process is found in the highest levels of 1024
maturity models. It also allows groups to adopt or adapt methods and metrics that are most 1025
applicable to their circumstance. We do not discuss process metrics further. 1026

The final area of concern is metrics of software as a product, for instance, proof of absence of 1027
buffer overflows, number of defects per thousand lines of code, assurance that specifications are 1028
met or path coverage achieved by a test suite. The Software Quality Group at the U.S. National 1029
Institute of Standards and Technology (NIST) organized a workshop on Software Measures and 1030
Metrics to Reduce Security Vulnerabilities (SwMM-RSV) to gather ideas on how the Federal 1031
Government can best identify, improve, package, deliver or boost the use of software measures 1032
and metrics to significantly reduce vulnerabilities. The web site is 1033
https://samate.nist.gov/SwMM-RSV2016.html. They called for short position statements, then 1034
invited workshop presentations based on 10 of the 20 statements submitted. The workshop was 1035
held on 12 July 2016. The full workshop report is available as NIST SP-XXXX. Much of this 1036
section is informed by the results of the workshop. Ideas were often brought up by one person, 1037
discussed and elaborated by others, then written or reported by yet others. Hence it is difficult to 1038
attribute ideas to particular people in most cases. We thank all those who participated in the 1039
workshop and made contributions, large and small, to the ideas noted in the report. 1040

https://samate.nist.gov/SwMM-RSV2016.html

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

26

We distinguish between metrics and measures. A metric is a simple, basic assessment or count 1041
with a clear value. A measure, on the other hand, is derived from other metrics and measures. 1042
Measures are often surrogates for properties that we would like to be able to determine. For 1043
instance, number of buffer overflow weaknesses is a metric with a reasonably clear definition. In 1044
contrast, code security is a measure that is only loosely related to the number of buffer 1045
overflows. The absence of flaws does not indicate the presence of excellence. 1046

3.1 A Taxonomy of Software Metrics 1047

Software metrics may be classified along four dimensions. The first dimension is how “high-1048
level” the metric. Low-level metrics are below semantics, such size of a program, number of 1049
paths, and function fan in/fan out. High-level metrics deal more with what the program is meant 1050
to accomplish. The second dimension is static or dynamic. Static metrics are those apply to the 1051
source code or “binary” itself. Dynamic metrics apply to the execution of the program. The third 1052
dimension is the point of view. It may be either an external view, sometimes called black box or 1053
functional, or an internal, “transparent” view, referred to as white box or structural. The fourth 1054
dimension is the object of the metric: bugs, code quality, and conformance. 1055

Software metrics may be divided into two broad categories as to whether they are low-level or 1056
high-level. Low-level metrics are generally widely applicable. High-level metrics, in contrast, 1057
deal with the relation between the program, as an object, and the developer or user, as a sentient 1058
subject. It is in this interaction between object and subject that quality arises, as Pirsig said. 1059
[Pirsig74] Analogously to low- and high-level metrics, there are low-level vulnerabilities and 1060
there are high-level vulnerabilities. Some low-level vulnerabilities are buffer overflow, integer 1061
overflow and failure to supply default switch cases. These low-level vulnerabilities can be 1062
discerned directly from the code. That is, one can inspect the code or have a program inspect the 1063
code and decide whether there’s a possibility of a buffer overflow (BOF) [Bojanova16] given 1064
particular inputs. There is no need to refer to a specification, requirement or security policy to 1065
determine whether a buffer overflow is possible. 1066

On the other hand, high-level vulnerabilities cannot be discerned solely by reference to the code. 1067
A human reviewer or a static analyzer must refer to requirements, specifications or a policy to 1068
determine high-level problems. For instance, failure to encrypt sensitive information generally 1069
cannot be discerned solely by code inspection. Of course, heuristics are possible. For example, if 1070
there is a variable named “password,” it is reasonable for a static analyzer to guess that variable 1071
is a password and should not be transmitted without protection or be available to unauthorized 1072
users. But neither tool nor human can determine whether or not the information in a variable 1073
named “ID” should be encrypted or not without examining an external definition. 1074

Having access to a requirements document for a security policy does not allow the quality of 1075
software to be assessed in all cases. Requirements documents typically deal with the behavior of 1076
the program and what the program uniquely needs to do. It is difficult, and perhaps impossible, 1077
to specify formally that code should be high quality. Software architecture is an attempt to define 1078

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

27

the structural components that distinguish good and useful software from software that is error-1079
prone, difficult to debug, brittle or inflexible. 1080

The second dimension of classifying metrics is most apparent in testing. Test metrics 1081
conceptually have two parts: test generation or selection and test result evaluation. Test metrics 1082
generally answer the question, how much of the program (internal) or the input space (external) 1083
has been exercised? Test case generation is necessarily static, while evaluation is usually 1084
Θdynamic, that is, based on the result of executions. In many test metrics, the two parts are tied 1085
to each other. They include a step like, choose additional test cases to increase the coverage, thus 1086
the dynamic part influences the static part. Testing is usually referred to as a dynamic technology 1087
since program execution is an essential part of testing. That is, if one comes up with test cases 1088
but never runs them, then no assurance is gained, strictly speaking. Of course, in most cases the 1089
thought and scrutiny that goes into selecting test cases is a static analysis that yields some 1090
assurance about the program. 1091

The third dimension is the point of view, either external or internal. External metrics are 1092
typically behavioral conformance to specifications, requirements or constraints. They are often 1093
referred to as “black box” or behavioral. These metrics are particularly useful for acceptance 1094
testing and estimating user or mission satisfaction. It matters little how well the program 1095
functions or is structured internally if it does not fulfil its purpose. In contrast, internal or 1096
structural metrics primarily deal with, or are informed by, the code’s architecture, 1097
implementation and fine-grained operation. Metrics in this class are related to qualities such as 1098
maintainability, portability, elegance and potential. For instance, external timing tests may be 1099
insufficient to determine the order of complexity of an algorithm whereas code examination may 1100
clearly show that the algorithm is order Θ(n2) and will have performance issues for large inputs. 1101

Determining how much testing is enough also shows the difference between internal and external 1102
metrics. External metrics, such as boundary value analysis [Beizer90] and combinatorial testing 1103
[Kuhn10], consider the behavioral or specification in computing how much has been tested or 1104
what has not been tested. On the other hand, internal metrics include counts of the number of 1105
blocks, mutation adequacy [Okun04], and path coverage metrics [Zhu97]. The two approaches 1106
are complementary. External testing can find missing features. Internal testing can bring up cases 1107
that are not evident from the requirements, for example, switching from an insertion sort to a 1108
quick sort when there are many items. 1109

The fourth dimension to classify metrics conceptually divides them into three types. The first is 1110
presence (or absence) of particular weaknesses such as buffer overflow (BOF) or injection (INJ) 1111
[Bojanova16]. Note that the absence of flaws does not indicate, say, resilient architecture. The 1112
second type is quality metrics that directly measure that code, or parts of it, is excellent. 1113
However, we only have proxies for “quality,” like maintainability, portability or the presence of 1114
assertions. The third type is conformance to specification or correctness. This third type of metric 1115
must be specific to each task. General requirement languages and checking approaches are 1116

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

28

available. Because of the profound differences between these three types, there is no one security 1117
or vulnerability metric or measure that guarantees excellent code. 1118

3.2 Software Assurance: The Object of Software Metrics 1119

Software assurance, that is, our assurance that software will behave as it should, comes from 1120
three broad sources. The first is the development process. If software is developed by a team 1121
with clear requirements, are well trained and who have demonstrated an ability to build good 1122
software with low vulnerability rates, then we have confidence or assurance that software that 1123
they produce is likely to be have few vulnerabilities. The second source of assurance is our 1124
analysis of the software. For instance, code reviews, acceptance tests and static analysis can 1125
assure us that vulnerabilities are likely to be rare in the software. We can trade off these two 1126
sources of assurance. If we have little information about the development process or the 1127
development process has not yielded good software in the past, we must do much more analysis 1128
and testing to achieve confidence in the quality of the software. In contrast, if we have 1129
confidence in the development team and the development process, we only need to do minimal 1130
analysis in order to be sure that the software follows past experience. 1131

 The third source of software assurance is a resilient execution environment. If we do not have 1132
confidence in the quality of the software, then we can run it in a container, give it few system 1133
privileges, then have other programs monitor the execution. Then if any vulnerabilities are 1134
triggered, the damage to the system is controlled. 1135

With research we may be able to give detail to the mathematical formula that expresses our 1136
assurance: A = f(p, s, e) where A is the amount of assurance we have, p is the assurance that 1137
comes from our knowledge of the process, s is assurance from static and dynamic analysis and e 1138
is the assurance that we gain from strict execution environments. 1139

3.3 Software Metrology 1140

To have a coherent, broadly useful system of metrics, one must have a solid theoretical 1141
foundation. That is, a philosophy of software measurement. This section addresses questions 1142
such as, what is software metrology? What is its purpose? What are the challenges unique to 1143
measuring software, in contrast to physical measurement? What are possible solutions or 1144
potential approaches? 1145

Software metrics have well known theoretical limitations, too. Analogous to Heisenberg’s 1146
Uncertainty Principle in Physics, Computer Science has the Halting Problem, Rice’s Theorem 1147
and related results that show that it is impossible to correctly determine interesting metrics for all 1148
possible programs. Although this is a caution, it does not mean that all useful, precise, accurate 1149
measurement is impossible. There are several ways to avoid these theoretical road blocks. First, 1150
we may be satisfied with relative properties. It may be satisfactory to be able to determine that 1151
the new version of a program is more secure (or less!) than the previous version. We need not 1152
have an absolute measure of the security of a program. Second, a metric might apply only to 1153

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

29

program that do not have perverse structures. A metric may still be useful even if it doesn’t apply 1154
to programs consisting solely of millions of conditional go-to statements with seemingly 1155
arbitrary computations interspersed. Nobody (should) write programs like that. Finally, society 1156
may decide that for certain applications, we will only build measurable software. Architects are 1157
not allowed to design building with arbitrary structures. They must run analyses showing that the 1158
design withstands expected loads and forces. Instead of writing some software and trying to 1159
show that it works, the expectation might change to only writing software that definitely satisfies 1160
its constraints and requirements. 1161

Computer programmers use the phrase “it’s not a bug: it’s a feature” half-seriously. Its sue 1162
highlights that bugs and features are entities that are related somehow. Let us assume that a 1163
program can be characterized as a set of features. (The notion that a program is a set of features 1164
is the basis of some size metrics. For example, Function Points attempts to capture the notion of 1165
a basic operation or function.) Saying that a program “has a bug” means it is a buggy version of a 1166
“good” program. Both the good program and the buggy version are programs. According to the 1167
assumption, both programs are a set of features. Therefore, the difference between the good 1168
program and the buggy program is some set of featuresfeatures added, removed, or changed. 1169
Hence, a precise definition is that a bug is the difference between the features you want and the 1170
features you have. In many cases, a bug may merely be an additional feature or one feature 1171
replacing another. 1172

We might contrast software metrology with physical metrology. In physical metrology the 1173
challenge is to precisely and reproducibly determine the properties of physical objects, events or 1174
systems. For software, on the other hand, most of the so-called measurement is merely counting. 1175
A case in point is that ASCMM-MNT-7: Inter-Module Dependency Cycles has a precise 1176
definition. [ASCMM16] It is not terribly difficult to write a program that precisely measures the 1177
number of instances where a module has references that cycle back a piece of software. The 1178
difference then is that physical metrology has clearly identified the properties that they want to 1179
determine, for instance, mass, length, duration and temperature. On the other hand, software 1180
metrology has a distinct gap. We want to determine measure high-level properties such as 1181
quality, maintainability and security, but we do not have precise definitions of those, and 1182
therefore cannot measure those directly. We can, however, measure many properties which are 1183
correlated with those high-level properties. 1184

Currently metrology relegates counting the number of entities to a second-class method of 1185
determining properties. Such counted quantities are all considered to be the same dimension one, 1186
sometimes called dimensionless quantities, although they may be different kinds. 1187

3.4 Product Metrics 1188

As much as good process is essential to the production of code with few vulnerabilities, the 1189
ultimate is to measure the code itself. As pointed out in the introduction to this section, measures 1190
of the software itself inform process improvement. 1191

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

30

Security or vulnerability measurement, in the broadest sense, which includes testing and 1192
checking, must be include in all phases of software development. Except for ambitious 1193
approaches like Clean Room, this kind of measurement cannot be left as a gate near the end of 1194
the production cycle. 1195

It is possible that software quality and security metrics may be the wrong emphasis to reduce 1196
software vulnerabilities. Such metrics may fade in emphasis as other software metrics have, for 1197
example cohesion and McCabe Cyclomatic Complexity. Perhaps the best approach is a “Clean 1198
Room” approach, in which metrics inform a decision to accept or reject and do not purport to 1199
establish an absolute certification of freedom from errors. 1200

3.4.1 Existing Metrics 1201
There are hundreds of proposed software metrics and measures, such as, lines of code, class 1202
coupling, number of closed classes, function points, change density and cohesion. Most of these 1203
are not precisely defined and are not rigorously validated. Worse yet, most of these only have 1204
moderate correlation with the high-level properties that we wish to determine in software. For 1205
instance, lines of code (LoC) capture only some of the variance in program capability. LoC for 1206
the same specification in the same language varies by as much as a factor of four, even when all 1207
programmers have similar expertise. On the other hand, LoC has a remarkably robust correlation 1208
with the number of bugs in a program. (This suggests that higher level languages, which allow a 1209
programmer to express functionality more succinctly, will lead to fewer bugs in general.) 1210

Even something as seemingly simple as counting the number of bugs in a program is surprisingly 1211
complicated [Black11b]. It is difficult to even subjectively define what is a bug. For example, 1212
one can write a binary search that is never subject to integer overflow, but the code is hard to 1213
understand. Dividing by zero may have a well-defined behavior, resulting in the special value 1214
“NaN”, but that is generally not a useful result. Bugs are often a cascade of several difficulties. 1215
Suppose (1) an unchecked user input leads to (2) an integer overflow that leads to (3) a buffer 1216
being allocated that is too small that causes (4) a buffer overflow that finally leads to (5) 1217
information exposure. Do we count this as one bug or five? If a programmer makes a systematic 1218
mistake in several places, say not releasing a resource after use, is that one problem or several? 1219
Rather than being the exception, these kinds of complication are the rule in software [Okun08]. 1220

For any realistic program, it is infeasible to try every single possible input. Instead, one must 1221
choose a metric that spans the entire space. Some of these metrics are combinatorial input 1222
metrics [Kuhn10], mutation adequacy [Okun04], path coverage metrics [Zhu97] and boundary 1223
value analysis [Beizer90]. 1224

There are far too many proposed measures to evaluate or even list here. We can state that, as 1225
alluded to above, metrics and measures should be firmly based on well-established science and 1226
have a rational foundation in metrology to have the greatest utility. [Flater16] 1227

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

31

3.4.2 Better Code 1228
Two workshop presentations, Andrew Walenstein’s “Measuring Software Analyzability” and 1229
James Kupsch’s “Dealing with Code that is Opaque to Static Analysis,” point the direction to 1230
new software measures. Both stressed that code should be amenable to automatic analysis. Both 1231
presented approaches to define what it means that code is readily analyzed, why analyzability 1232
contributes to reduced vulnerabilities and how analyzability could be measured and increased. 1233

There are subsets of programming languages that are designed to be analyzable, such as SPARK, 1234
or to be less error-prone, like Less Hatton’s SaferC. Participants generally favored using better 1235
languages, for example, functional languages such as F# or ML. However, there was no 1236
particular suggestion of the language, or languages, of the future. 1237

While code-based metrics are important, we can expect complementary results from metrics for 1238
other aspects of software. Some aspects are the software architecture and design erosion metrics, 1239
linguistic aspects of the code, developers’ backgrounds and metrics related to the software 1240
requirements. 1241

3.4.3 Metrics and Measures of Binaries and Executables 1242
Some workshop participants were of the opinion that there is a significant need for metrics and 1243
measures of binaries or executables. With today’s optimizing compilers and with the dependence 1244
on many libraries delivered in binary, solely examining source code leaves many avenues for 1245
appearance of subtle vulnerabilities. 1246

3.4.4 More Useful Tool Outputs 1247
There are many powerful and useful software assurance tools available today. No single tool 1248
meets all needs. Accordingly, users should use several tools. This is difficult because tools have 1249
different output formats and use different terms and classes. Tool outputs should be standardized. 1250
That is, the more there is common nomenclature, presentation and detail, the more feasible it is 1251
for users to combine tool results with other software assurance information and to choose a 1252
combination of tools that is most beneficial for them. 1253

Participants felt the need for scientifically valid research about tool strengths and limitations, 1254
mechanisms to allow publication of third party evaluation of tools, a common forum to share 1255
insights about tools and perhaps even a list of verified or certified tools. 1256

3.5 Further Reading 1257

[Barritt16] Keith Barritt, “3 Lessons: FDA/FTC Enforcement Against Mobile Medical Apps,” 1258
January 2016. Available at http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-1259
against-mobile-medical-apps-0001 1260

[FTC16] “Mobile Health App Developers: FTC Best Practices,” April 2016. Available at 1261
http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-app-developers-ftc-best-1262
practices 1263

http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-against-mobile-medical-apps-0001
http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-against-mobile-medical-apps-0001
http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-app-developers-ftc-best-practices
http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-app-developers-ftc-best-practices

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

32

[Perini16] Barti Perini, Stephen Shook and Girish Seshagiri, “Reducing Software Vulnerabilities 1264
– The Number One Goal for Every Software Development Organization, Team, and Individual,” 1265
ISHPI Information Technologies Technical Report, 22 July 2016. 1266

 1267

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

33

4 Summary and Community Engagement 1268
 1269
In response to the February 2016 Federal Cybersecurity Research and Development Strategic 1270
Plan, NIST was asked to identify ways to dramatically reduce software vulnerabilities. NIST 1271
worked with the software assurance community to identify five promising approaches. This 1272
report presents some background for each of the approaches along a summary statement of the 1273
maturity of the approach and the rationale for why it might make a dramatic difference. Further 1274
reading was provided for each approach. Hopefully other approaches will be identified in the 1275
future. 1276
 1277
These approaches are focused on technical activities with a three to seven-year horizon. Many 1278
critical aspects of improving software, such as creating better specifications, using the testing 1279
tools available today, understanding and controlling dependencies and creating and following 1280
project guidelines, were not addressed. While these areas fall outside the scope of the report, they 1281
are critical both now and in the future. Similarly, the report does not address research and 1282
development that is needed as part of a broader understanding of software and vulnerabilities. 1283
Topics such as identifying sources of vulnerabilities, how vulnerabilities manifest as bugs, 1284
improved scanning during development and use are also critical, but, again, outside the scope of 1285
this report. 1286

This section of the report outlines some of the needed steps for moving forward by engaging the 1287
broader community, including researchers, funders, developers, managers and customers/users. 1288
The section addresses: 1) engaging and supporting the research community, 2) education and 1289
training and 3) empowering customers and users of software to meaningfully participate by not 1290
only asking for quality, but pushing it. 1291

 1292

4.1 Engaging the Research Community 1293

There are many approaches to engaging the research community beyond simply funding secure 1294
software research. 1295

4.1.1 Grand Challenges, Prizes and Awards 1296
Many organizations have announced grand challenges, some of which are general research goals 1297
and some are competitions. More secure software can be the focus of challenges or a side 1298
benefit, that is, the competition could be focused on a non-security goal, but require the winner 1299
to produce secure software. Many organizations use bug bounty programs to incentive the 1300
research community to find and notify organizations about bugs. 1301

4.1.2 Research Infrastructure 1302
There is a need for repositories of data related to secure software. Several very successful 1303
repositories exist, such as the National Vulnerability Database. However, many more are needed. 1304

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

34

There could be repositories to share related research as well as open repositories of source code, 1305
as mentioned in Sect. 4.3.6. There is also a need for a better understanding of weaknesses and 1306
bugs. For example, what proportion of vulnerabilities result from implementation errors and 1307
what proportion from design errors? Researchers need to be able to replicate results and test 1308
across different types of code. All of these activities require a large and public research 1309
infrastructure. 1310

 1311

4.2 Education and Training 1312

The role of education and training cannot be overstated. This is the primary mechanism how new 1313
approaches are transitioned from the research community to both the development community 1314
and to the user/customer community. 1315

Education and training for the developer community needs to address both up and coming 1316
developers currently in the educational system as well as current developers who need to update 1317
their skills. 1318

Over the past couple of years, there has been a shift in focus in higher education to include a 1319
greater emphasis on designing software with security built in from the beginning rather than 1320
added afterwards. K-12 education has also seen growth in cybersecurity efforts – both from the 1321
user and producer perspectives. It is clear that computer science and cybersecurity come together 1322
in the issue of secure programming. Understanding the principles of cybersecurity are essential 1323
to making sure that software is secure, more and more academic programs are educating their 1324
students to program with security in mind. 1325

Current developers need to be exposed to new approaches and techniques. In order for 1326
developers to make changes, they need to see evidence that the new approaches and techniques 1327
will be effective, as well as training material. To complement the training of front-line software 1328
developers, managers and executives must also be educated in the risk management implications 1329
of software vulnerabilities and the importance of investing in cybersecurity and low vulnerability 1330
software. In order for this training to be successful, it, too, will require evidence that investment 1331
in secure software will be cost effective. 1332

It is currently unknown which pedagogical techniques are most effective. Early research has 1333
shown that providing developers with a better understanding of weaknesses creates better 1334
programs. [Wu11] Additional research, as well as training material ranging from use cases to 1335
how to guides will be needed for successful transition. The Federal government can lead by 1336
example by training its developer community. 1337

 1338

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

35

4.3 Consumer-Enabling Technology Transfer 1339

One of the drivers for better software is if users, consumers and purchasers of software demand 1340
it. While the user community clearly wants higher quality software, it is difficult for them to 1341
meaningfully ask for it and know if it has been received. Improved metrics that are customer-1342
focused are needed as are other policy and economic approaches. Policy and economic 1343
approaches are outside the scope of this report, but are critical to successful technology transfer 1344
for improved software. This section outlines some of these approaches that were discussed 1345
during the various workshops. 1346

4.3.1 Government Contracting and Procurement 1347
The Federal Government could lead a significant improvement in software quality by requiring 1348
software quality during contracting and procurement and by changing general expectations. 1349
Model contract language can include incentives for software to adhere to higher coding and 1350
assurance standards or punitive measures for egregious violations of those standards. Sample 1351
procurement language for cybersecurity and secure software has been published by the defense 1352
community [Marien16], the financial sector, the automotive sector and the medical sector. The 1353
focus on low bidder must include provisions for “fitness for purpose” that factor in 1354
considerations for secure software. 1355

4.3.2 Liability 1356
There is much discussion in the software community about liability including during the 1357
Software Measures and Metrics to Reduce Security Vulnerabilities (SwMM-RSV) workshop. 1358
Many felt that companies developing software should be contractually liable for vulnerabilities 1359
discovered after delivery. Many participants did not believe that there should be legal liability at 1360
this time. On the other hand, the language of such liability clauses needs to be strict enough to, as 1361
one participant wrote, “hold companies accountable for sloppy and easily-avoidable errors, flaws 1362
and mistakes.” 1363

Defining “sloppy and easily avoidable” is not a trivial matter. An additional complicating factor 1364
is that liability includes a concept of who is responsible. Responsibility may be hard to determine 1365
in the case of “open source” or freely available software. 1366

4.3.3 Insurance 1367
Cyber insurance is a growing area as cyber continues to grow in importance. The Financial 1368
Services Sector Coordinating Council (FSSCC) for Critical Infrastructure Protection and 1369
Homeland Security produced a 26-page document entitled Purchasers’ Guide to Cyber Insurance 1370
Products defining what this kind of insurance is, explaining why organizations need it, 1371
describing how it can be procured and giving other helpful information. 1372

4.3.4 Vendor-Customer Relations 1373
It would help end users if software has a “bill of materials” such that those using it could respond 1374
to a new threat in which some part of the software became a vector of attack. Users are 1375

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

36

sometimes prohibited by software licenses from publishing evaluations or comparisons with 1376
other tools. Georgetown University recently published a study of this issue. [Klass16] The study 1377
was sponsored by the Department of Homeland Security (DHS) Science & Technology 1378
Directorate (S&T), Cyber Security Division through the Security and Software Engineering 1379
Research Center (S2ERC). 1380

4.3.5 Standards 1381
The development and adoption of standards and guidelines, as well as conformity assessment 1382
programs, are used across multiple industries to address quality. The US system of voluntary 1383
industry consensus standards allows for great flexibility to address needs. In some cases, the 1384
Government (federal or state/local) set regulatory standards and communities often self-regulate. 1385

4.3.6 Code Repositories 1386
We explained the need for additional repositories of well-tested code in both Sections 2.1 and 1387
2.4. Code repositories promote code re-use and encourage organizations to test code by 1388
providing a location where the results can be published. Repositories can also contain examples 1389
of low bug densities projects such as Tokeneer. [Barnes06] 1390

 1391

4.4 Conclusion 1392

The call for a dramatic reduction in software vulnerability is heard from multiple sources, 1393
including the 2015 Cybersecurity Action Plan. This report has identified five approaches for 1394
achieving this goal. Each approach meets three criteria: 1) have a potential for dramatic 1395
improvement in software quality, 2) could make a difference in a three to seven-year timeframe 1396
and 3) are technical activities. The identified approaches use multiple strategies: 1397

• Stopping vulnerabilities before they occur generally including improved methods for 1398
specifying and building software. 1399

• Finding vulnerabilities including better testing techniques and more efficient use of 1400
multiple testing methods. 1401

• Reducing the impact of vulnerabilities by building architectures that are more resilient, so 1402
that vulnerabilities can’t be meaningfully exploited. 1403

Formal Methods. Formal methods include multiple techniques based on mathematics and logic, 1404
ranging from parsing to type checking to correctness proofs to model-based development to 1405
correct-by-construction. While previously deemed too time-consuming, formal methods have 1406
become mainstream in many behind-the-scenes applications and show significant promise for 1407
both building better software and for supporting better testing. 1408

System Level Security. System Level Security reduces the impact that vulnerabilities have. 1409
Operating system containers and microservices are already a significant part of the national 1410
information infrastructure. Given the clear manageability, cost and performance advantages of 1411

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

37

using them, it is reasonable to expect their use to continue to expand. Security-enhanced versions 1412
of these technologies, if adopted, can therefore have a wide-spread effect on the exploitation of 1413
software vulnerabilities throughout the National Information Infrastructure. 1414

Additive Software Analysis. There are many types of software analysis – some are general and 1415
some target very specific vulnerabilities. The goal of additive software analysis is to be able to 1416
use multiple tools as part of an ecosystem. This will allow for increased growth and use of 1417
specialized software analysis tools and ability to gain a synergy between tools and techniques. 1418

More Mature Domain-Specific Software Development Frameworks. The goal of this 1419
approach is to promote the use (and reuse) of well-tested, well-analyzed code, and thus to reduce 1420
the incidence of exploitable vulnerabilities. 1421

Moving Target Defenses (MTD) and Artificial Diversity. This approach is a collection of 1422
techniques to vary the software’s detailed structures and properties such that an attacker has 1423
much greater difficulty exploiting any vulnerability. The goal of artificial diversity and moving 1424
target defense (MTD) is to reduce an attacker's ability to exploit any vulnerabilities in the 1425
software, not to reduce the number of weaknesses in software. 1426

A critical need for improving security is to have software with fewer and less exploitable 1427
vulnerabilities. The measures, techniques and approaches we have described will be able to do 1428
this. Higher quality software, though, does not get created in a vacuum. There must be a robust 1429
research infrastructure, education and training, and customer pull. Higher quality software is a 1430
necessary step, but it is insufficient. A robust operation and maintenance agenda that spans a 1431
system’s lifecycle is still needed. 1432

 1433

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

38

5 References 1434
[Anderson72] James P. Anderson, “Computer Security Technology Planning Study,” Air force 1435
ESD-TR-73-51, Vol II, Oct. 1972. 1436

[Armstrong14] Robert C. Armstrong, Ratish J. Punnoose, Matthew H. Wong and Jackson R. 1437
Mayo, “Survey of Existing Tools for Formal Verification,” Sandia National Laboratories report 1438
SAND2014-20533, December 2014. http://prod.sandia.gov/techlib/access-1439
control.cgi/2014/1420533.pdf 1440

[ASCMM16] “Automated Source Code Maintainability Measure™ (ASCMM™) V1.0”, 1441
http://www.omg.org/spec/ASCMM/1.0, January 2016 1442

[Bakker14] Paul Bakker, “Providing assurance and trust in PolarSSL”, 2014 1443
https://tls.mbed.org/tech-updates/blog/providing-assurance-and-trust-in-polarssl, accessed 21 1444
June 2016. 1445

[Barnes06] Janet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David Cooper and 1446
Bill Everett, “Engineering the Tokeneer Enclave Protection Software”, Proc. 1st IEEE 1447
International Symposium on Secure Software Engineering (ISSSE), March 2006. Available at 1448
http://www.adacore.com/uploads/technical-papers/issse2006tokeneer_altran.pdf 1449

[Barnett05] M. Barnett, B.E. Chang, R. DeLine, B. Jacobs and K. R. M. Leino, “Boogie: A 1450
Modular Reusable Verifier for Object-Oriented Programs,” Proc. International Symposium on 1451
Formal Methods for Components and Objects (FMCO), 2005 1452

[Barnum12] Sean Barnum, “Software Assurance Findings Expression Schema (SAFES) 1453
Overview,” January 2012. Available at https://www.mitre.org/publications/technical-1454
papers/software-assurance-findings-expression-schema-safes-overview, accessed 8 September 1455
2016. 1456

[Barritt16] Keith Barritt, “3 Lessons: FDA/FTC Enforcement Against Mobile Medical Apps,” 1457
January 2016. Available at http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-1458
against-mobile-medical-apps-0001 1459

[Beck94] K. Beck, “Simple Smalltalk testing: with Patterns,” The Smalltalk Report, 1994. 1460

[Beizer90] Boris Beizer, “Software Testing Techniques,” 2nd ed., Van Nostrand Reinhold Co. 1461
New York, NY, ISBN: 0-442-20672-0. 1462

[Bell76] D.E. Bell and L. Lapadula, “Secure Computer System: Unified Exposition and Multics 1463
Interpretation,” Technical Report No. ESD-TR-75-306, Electronics Systems Division, AFSC, 1464
Hanscom AF Base, Bedford MA, 1976. 1465

http://prod.sandia.gov/techlib/access-control.cgi/2014/1420533.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2014/1420533.pdf
http://www.omg.org/spec/ASCMM/1.0
https://tls.mbed.org/tech-updates/blog/providing-assurance-and-trust-in-polarssl
http://www.adacore.com/uploads/technical-papers/issse2006tokeneer_altran.pdf
https://www.mitre.org/publications/technical-papers/software-assurance-findings-expression-schema-safes-overview
https://www.mitre.org/publications/technical-papers/software-assurance-findings-expression-schema-safes-overview
http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-against-mobile-medical-apps-0001
http://www.meddeviceonline.com/doc/lessons-fda-ftc-enforcement-against-mobile-medical-apps-0001

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

39

[Biba77] K.J. Biba, “Integrity Considerations for Secure Computer systems,” USAF Electronic 1466
Systems Division, Bedford, MA, ESD-TR-76-372, 1977. 1467

[Bjørner16] Nikolaj Bjørner, “SMT Solvers: Foundations and Applications”, in Dependable 1468
Software Systems Engineering, J. Esparza et. al. eds., pp 24-32, IOS Press, 2016. DOI: 1469
10.3233/978-1-61499-627-9-24 1470

[Black11a] Paul E. Black, Michael Kass, Michael Koo and Elizabeth Fong, “Source Code 1471
Security Analysis Tool Functional Specification Version 1.1,” NIST Special Publication (SP) 1472
500-268 v1.1, February 2011, DOI: 10.6028/NIST.SP.500-268v1.1 1473

[Black11b] Paul E. Black, “Counting Bugs is Harder Than You Think,” 11th IEEE Int'l Working 1474
Conference on Source Code Analysis and Manipulation (SCAM 2011), September 2011, 1475
Williamsburg, VA. 1476

[Black16] Paul E. Black and Elizabeth Fong, “Report of the Workshop on Software Measures 1477
and Metrics to Reduce Security Vulnerabilities (SwMM-RSV),” NIST Special Publication (SP) 1478
500-xxx, October 2016. 1479

[Boebert85] W.E. Boebert and R.Y. Kain, “A Practical Alternative to Hierarchical Integrity 1480
Policies,” Proc. 8th National Computer Security Conference, Gaithersburg, MD, p.18, 1985. 1481

[Bojanova16] Irena Bojanova, Paul E. Black, Yaacov Yesha and Yan Wu, “The Bugs 1482
Framework (BF): A Structured Approach to Express Bugs,” 2016 IEEE Int’l Conf. on Software 1483
Quality, Reliability, and Security (QRS 2016), Vienna, Austria, August 1-3, 2016. Available at 1484
https://samate.nist.gov/BF, accessed 12 September 2016. 1485

[Boulanger12] Jean-Louis Boulanger (Ed.) Industrial Use of Formal Methods: Formal 1486
Verification, July 2012, Wiley-ISTE. 1487

[Busoli07] Simone Busoli, “Inversion of Control and Dependency Injection with Castle Windsor 1488
Container,” 1489
http://dotnetslackers.com/articles/designpatterns/InversionOfControlAndDependencyInjectionWi1490
thCastleWindsorContainerPart1.aspx, July 2007. Accessed 29 September 2016. 1491

[Brooks95] F. Brooks, The Mythical Man-Month, Anniversary edition with 4 new chapters, 1492
Addison-Wesley, 1995. 1493

[Clang] “Clang: A C language family frontend for LLVM,” http://clang.llvm.org/ 1494

[CodeDx15] “Finding Software Vulnerabilities Before Hackers Do,” available at 1495
https://codedx.com/wp-content/uploads/2015/10/AppSec101-FromCodeDx.pdf, Accessed 8 1496
September 2016. 1497

https://samate.nist.gov/BF
http://dotnetslackers.com/articles/designpatterns/InversionOfControlAndDependencyInjectionWithCastleWindsorContainerPart1.aspx
http://dotnetslackers.com/articles/designpatterns/InversionOfControlAndDependencyInjectionWithCastleWindsorContainerPart1.aspx
http://clang.llvm.org/
https://codedx.com/wp-content/uploads/2015/10/AppSec101-FromCodeDx.pdf

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

40

[Corbato65] F.J. Corbato and V.A. Vyssotsky, “Introduction and Overview of the Multics 1498
System,” 1965 Fall Joint Computer Conference. Available at http://multicians.org/fjcc1.html 1499

[Docker16] “Docker,” https://www.docker.com/ 1500

[Doyle16] Richard Doyle, “Formal Methods, including Model-Based Verification and Correct-1501
By-Construction,” Dramatically Reducing Security Vulnerabilities sessions, Software and 1502
Supply Chain Assurance (SSCA) Working Group Summer 2016, McLean, Virginia, July 2016, 1503
Available at https://samate.nist.gov/docs/DRSV2016/SSCA_07_JPL_FormalMethods_Doyle.pdf 1504

[FCRDSP16] Federal Cybersecurity Research and Development Strategic Plan. Available at 1505
http://www.whitehouse.gov/sites/whitehouse.gov/files/documents/2016_Federal_Cybersecurity_1506
Research_and_Development_Strategic_Plan.pdf 1507

[Flater16] David Flater, Paul E. Black, Elizabeth Fong, Raghu Kacker, Vadim Okun, Stephen 1508
Wood and D. Richard Kuhn, “A Rational Foundation for Software Metrology,” NIST Internal 1509
Report (IR) 8101, January 2016. Available at https://doi.org/10.6028/NIST.IR.8101 1510

[Fowler14] Martin Fowler, “Microservices: a definition of this new architectural term”, 1511
http://martinfowler.com/articles/microservices.html, March 2014 1512

[FramaC] “What is Frama-C”, http://frama-c.com/what_is.html 1513

[FTC16] Federal Trade Commission, “Mobile Health App Developers: FTC Best Practices,” 1514
April 2016. Available at http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-1515
app-developers-ftc-best-practices 1516

[Gabriel96] Richard P. Gabriel, “Patterns of Software: Tales from the Software Community,” 1517
Oxford Press, 1996. 1518

[Gamma95] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides, “Design Patterns: 1519
Elements of Reusable Object-Oriented Software”, Addison-Wesley, 1995. 1520

[GCC16] The GNU Compiler Collection, available at https://gcc.gnu.org/ 1521

[Goguen84] J.A. Goguen and J. Meseguer, “Unwinding and Inference Control,” Proc. 1984 1522
IEEE Symposium on Security and Privacy, 1984. 1523

[Hurd16] “Hurd”, Web Services Architecture Workshop Group, 1524
https://www.gnu.org/software/hurd/hurd.html, 2016. 1525

[Jézéquel97] Jean-Marc Jézéquel and Bertrand Meyer, “Design by Contract: the Lesson of 1526
Ariane,”, IEEE Computer, 30(1):129-130, January 1997. DOI: 10.1109/2.562936 1527

http://multicians.org/fjcc1.html
https://www.docker.com/
https://samate.nist.gov/docs/DRSV2016/SSCA_07_JPL_FormalMethods_Doyle.pdf
http://www.whitehouse.gov/sites/whitehouse.gov/files/documents/2016_Federal_Cybersecurity_Research_and_Development_Strategic_Plan.pdf
http://www.whitehouse.gov/sites/whitehouse.gov/files/documents/2016_Federal_Cybersecurity_Research_and_Development_Strategic_Plan.pdf
https://doi.org/10.6028/NIST.IR.8101
http://martinfowler.com/articles/microservices.html
http://frama-c.com/what_is.html
http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-app-developers-ftc-best-practices
http://www.ftc.gov/tips-advice/business-center/guidance/mobile-health-app-developers-ftc-best-practices
https://gcc.gnu.org/
https://www.gnu.org/software/hurd/hurd.html

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

41

[Kastrinis14] G. Kastrinis and Y. Smaragdakis, “Hybrid Context-Sensitivity for Points-To 1528
Analysis,” Proc. Conference on Programming Language Design and Implementation (PLDI), 1529
2014. 1530

[KDM15] “Knowledge Discovery Metamodel (KDM),” available at 1531
http://www.omg.org/technology/kdm/, accessed 8 September 2016. 1532

[Kiniry08] Joseph Kiniry and Daniel Zimmerman, “Secret Ninja Formal Methods,” 15th Int’l 1533
Symp. on Formal Methods (FM'08). Turku, Finland. May, 2008. 1534

[Klass16] Gregory Klass and Eric Burger, “Vendor Truth Serum”, Georgetown University, 1535
https://s2erc.georgetown.edu/projects/vendortruthserum Accessed 19 September 2016. 1536

[Klein14] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, 1537
Rafal Kolanski and Gernot Heiser, “Comprehensive Formal Verification of an OS Microkernel,” 1538
NICTA and UNSW, Sydney, Australia, ACM Transactions on Computer Systems, Vol. 32, No. 1539
1, Article 2, Publication date: February 2014. 1540

[Kuhn10] Richard Kuhn, Raghu Kacker and Y. Lei, “Practical Combinatorial Testing”, NIST 1541
Special Publication 800-142, Oct. 2010. Available at 1542
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf 1543

[Lampson04] B.W. Lampson, “Software components: Only the Giants survive,” Computer 1544
Systems: Theory, Technology, and Application, Springer, 2004. 1545

[Lemon13] Lemon, “Getting Started with LXC on an Ubuntu 13.04 VPS”, 1546
https://www.digitalocean.com/community/tutorials/getting-started-with-lxc-on-an-ubuntu-13-04-1547
vps, August 2013. 1548

[LXC] “LXC”, Ubuntu 16.04 Server Guide, https://help.ubuntu.com/lts/serverguide/lxc.html 1549
Accessed 27 September 2016. 1550

[Marien16] John R. Marien, Chair, and Robert A. Martin, Co-chair, “Suggested Language to 1551
Incorporate Software Assurance Department of Defense Contracts,” Department of Defense 1552
(DoD) Software Assurance (SwA) Community of Practice (CoP) Contract Language Working 1553
Group, February 2016. Available at http://www.acq.osd.mil/se/docs/2016-02-26-SwA-1554
WorkingPapers.pdf Accessed 6 September 2016. 1555

[McConnell04] Steve McConnell, “Code Complete,” 2nd Ed., Microsoft Press, 2004. ISBN: 1556
0735619670 1557

[Mcilroy68] D. McIlroy, “Mass Produced Software Components,” 1968 NATO Conference on 1558
Software Engineering. 1559

http://www.omg.org/technology/kdm/
https://s2erc.georgetown.edu/projects/vendortruthserum
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-142.pdf
https://www.digitalocean.com/community/tutorials/getting-started-with-lxc-on-an-ubuntu-13-04-vps
https://www.digitalocean.com/community/tutorials/getting-started-with-lxc-on-an-ubuntu-13-04-vps
https://help.ubuntu.com/lts/serverguide/lxc.html
http://www.acq.osd.mil/se/docs/2016-02-26-SwA-WorkingPapers.pdf%20Accessed%206%20September%202016
http://www.acq.osd.mil/se/docs/2016-02-26-SwA-WorkingPapers.pdf%20Accessed%206%20September%202016

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

42

[Oberg99] James Oberg, “Why the Mars probe went off course,” IEEE Spectrum, 36(12):34-39, 1560
December 1999. DOI: 10.1109/6.809121 1561

[Okhravi13] H. Okhravi, M. A. Rabe, T. J. Mayberry, W. G. Leonard, T. R. Hobson, D. Bigelow 1562
and W. W. Streilein, “Survey of Cyber Moving Targets,” Massachusetts Institute of Technology 1563
Lincoln Laboratory. Technical Report 1166, September 2013, Available 1564
https://www.ll.mit.edu/mission/cybersec/publications/publications:files/full_papers/2013_09_231565
_OkhraviH_TR_FP.pdf Accessed 15 September 2015. 1566

[Okun04] Vadim Okun, Paul E. Black and Yaacov Yesha, “Comparison of Fault Classes in 1567
Specification-Based Testing,” Information and Software Technology, Elsevier, 46(8):525-533, 1568
June 2004. 1569

[Okun08] Vadim Okun, Romain Gaucher and Paul E. Black, eds., “Static Analysis Tool 1570
Exposition (SATE) 2008,” NIST Special Publication (SP) 500-279, June 2009, DOI: 1571
10.6028/NIST.sp.500-279 1572

[Pal05] Partha Pal, Michael Atigetchi, Jennifer Chong, Franklin Webber and Paul Rubel, 1573
“Survivability Architecture of a Mission Critical System: The DPASA Example”, 21st Annual 1574
Computer Security Applications Conference (ACSAC 2005), pages 495-504, ISSN: 1063-9527, 1575
ISBN: 0-7695-2461-3, DOI: 10.1109/CSAC.2005.54, December 2005. 1576

[PaX01] “Design and Implementation of Address Space Layout randomization,” 1577
https://pax.grsecurity.net/docs/aslr.txt, cited in “Address space layout randomization,” 1578
Wikipedia. Available at https://en.wikipedia.org/wiki/Address_space_layout_randomization 1579
Access 15, September 2016. 1580

[Perini16] Barti Perini, Stephen Shook and Girish Seshagiri, “Reducing Software Vulnerabilities 1581
– The Number One Goal for Every Software Development Organization, Team, and Individual,” 1582
ISHIPI technical Report, 22 July 2016. 1583

[Pirsig74] Robert M. Pirsig, “Zen and the Art of Motorcycle Maintenance: An Inquiry into 1584
Values,” William Morrow & Company, 1974. 1585

[Rashid86] R. Rashid, “Threads of a New System,” Unix Review, Vol 4, No. 8, August 1986. 1586

[Regehr15] John Regehr, “Comments on a Formal Verification of PolarSSL”, 2015 1587
http://blog.regehr.org/archives/1261, accessed 21 June 2016. 1588

[Rose16] “ROSE compiler infrastructure,” http://rosecompiler.org/, accessed 8 September 2016. 1589

[Rushby05] John Rushby, “An Evidential Tool Bus,” Proc. International Conference on Formal 1590
Engineering Methods, 2005. 1591

https://www.ll.mit.edu/mission/cybersec/publications/publications:files/full_papers/2013_09_23_OkhraviH_TR_FP.pdf%20Accessed%2015%20September%202015
https://www.ll.mit.edu/mission/cybersec/publications/publications:files/full_papers/2013_09_23_OkhraviH_TR_FP.pdf%20Accessed%2015%20September%202015
https://pax.grsecurity.net/docs/aslr.txt
https://en.wikipedia.org/wiki/Address_space_layout_randomization
http://blog.regehr.org/archives/1261

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

43

[Saltzer75] J. Slatzer and M. Shroeder, “The Protection of Information in Computer systems,” 1592
Proc. IEEE vol. 63, issue 9, p. 1278-1308, September 1975. 1593

[SMTLIB15] “SMT-LIB: The Satisfiability Modulo Theories Library”, 1594
http://smtlib.cs.uiowa.edu/, June 2015. 1595

[Software16] “Software framework”, https://en.wikipedia.org/wiki/Software_framework 1596

[Tschannen11] J. Tschannen, C. A. Furia, M. Nordio and B. Meyer, “Verifying Eiffel Programs 1597
with Boogie,” Boogie: First International Workshop on Intermediate Verification Languages, 1598
2011. 1599

[TodoMVC16] “TodoMVC: Helping you select an MV* framework”, http://todomvc.com/ 1600

[Tolerant07] “Tolerant Systems,” http://www.tolerantsystems.org/ 1601

[VCC13] VCC verifier, available at https://vcc.codeplex.com/ 1602

[Voas16a] Jeffrey Voas and Kim Schaffer, “Insights on Formal Methods in Cybersecurity”, 1603
IEEE Computer 49(5):102–105, May 2016, DOI: 10.1109/MC.2016.131 1604

[Voas16b] Jeffrey Voas and Kim Schaffer, (Insights, part 2), IEEE Computer, August 2016. 1605

[Wayner15] Peter Wayner, “7 reasons why frameworks are the new programming languages”, 1606
http://www.infoworld.com/article/2902242/application-development/7-reasons-why-1607
frameworks-are-the-new-programming-languages.html, March 2015. 1608

[What] “What’s LXC?”, https://linuxcontainers.org/lxc/introduction/ 1609

[Whaley05] J. Whaley, D. Avots, M. Carbin and M. S. Lam, “Using Datalog with Binary 1610
Decision Diagrams for Program Analysis,” Proc. Programming Languages and Systems 1611
(ASPLAS), 2005. 1612

[Williams16] Chris Williams, “How one developer just broke Node, Babel and thousands of 1613
projects in 11 lines of JavaScript,” http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos 1614

[Woodcock09] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui and John Fitzgerald, 1615
“Formal Methods: Practice and Experience,” ACM Computing Surveys, 41(4), October 2009, 1616
Article No. 19, DOI: 10.1145/1592434.1592436. Available at 1617
http://homepage.cs.uiowa.edu/~tinelli/classes/181/Fall14/Papers/Wood09.pdf 1618

[Woodcock10] Jim Woodcock, Emine Gökçe Aydal and Rod Chapman, “The Tokeneer 1619
Experiments”, in Reflections on the Work of C.A.R. Hoare, History of Computing, Chapter 17, 1620
pp 405-430, July 2010, DOI: 10.1007/978-1-84882-912-1_17. 1621

http://smtlib.cs.uiowa.edu/
https://en.wikipedia.org/wiki/Software_framework
http://todomvc.com/
http://www.tolerantsystems.org/
https://vcc.codeplex.com/
http://www.infoworld.com/article/2902242/application-development/7-reasons-why-frameworks-are-the-new-programming-languages.html
http://www.infoworld.com/article/2902242/application-development/7-reasons-why-frameworks-are-the-new-programming-languages.html
https://linuxcontainers.org/lxc/introduction/
http://www.theregister.co.uk/2016/03/23/npm_left_pad_chaos
http://homepage.cs.uiowa.edu/%7Etinelli/classes/181/Fall14/Papers/Wood09.pdf

NISTIR 8151 (DRAFT) DRAMATICALLY REDUCING SOFTWARE VULNERABILITIES
 REPORT TO OSTP

44

[Woody14] Carol Woody, R. Ellison and W. Nichols, “Predicting Software Assurance Using 1622
Quality and Reliability Measures,” CMU/SEI-2014-TN-026, Dec. 2014. 1623

[WSA04] “Web Services Architecture”, https://www.w3.org/2002/ws/arch/ 1624

[Wu11] Yan Wu, H. Siy and Robin A. Gandhi, “New Ideas and Emerging Results Track: 1625
Empirical Results on the Study of Software Vulnerabilities,” New Ideas and Emerging Results 1626
Track at the 33rd International Conference on Software Engineering (ICSE 2011), Honolulu, 1627
Hawaii, May 21-28, 2011. 1628

[Yang10] J. Yang and C. Hawblitzel, “Safe to the last instruction: automated verification of a 1629
type-safe operating system,” in Proc. 31st ACM SIGPLAN Conference on Programming 1630
Language Design and Implementation (PLDI), 2010. 1631

[Zhu97] Hong Zhu, Patrick A. V. Hall and John H. R. May, “Software Unit Test Coverage and 1632
Adequacy,” ACM Computing Surveys (CSUR), 29(4): 366-427, December 1997, DOI: 1633
10.1145/267580.267590 1634

 1635

https://www.w3.org/2002/ws/arch/

	Draft NISTIR 8151, Dramatically Reducing Software Vulnerabilities: Report to the White House Office of Science and Technology Policy
	Table of Contents
	1 Introduction
	1.1 SCOPE of REPORT
	1.2 METRICS
	1.3 METHODOLOGY
	1.4 REPORT ORGANIZATION

	2 Technical Approaches
	2.1 Formal Methods
	2.1.1 Rigorous Static Program Analysis
	2.1.2 Model Checkers, SAT Solvers and Other “Light Weight” Decision Algorithms
	2.1.3 Directory of Verified Tools and Verified Code
	2.1.4 Pragmas, Assertions, Pre- and Postconditions, Invariants, Properties, Contracts and Proof Carrying Code
	2.1.5 Correct-by-Construction and Model-Based Development
	2.1.6 Maturity Level
	2.1.7 Basis for Confidence
	2.1.8 Rationale for Potential Impact
	2.1.9 Further Reading

	2.2 System Level Security
	2.2.1 Operating System Containers
	2.2.2 Microservices
	2.2.3 Maturity Level
	2.2.4 Basis for Confidence
	2.2.5 Rational for Potential Impact
	2.2.6 Further Reading

	2.3 Additive Software Analysis Techniques
	2.3.1 Software Information Expression and Exchange Standards
	2.3.2 Tool Development Framework or Architecture
	2.3.3 Combining Analysis Results
	2.3.4 Maturity Level
	2.3.5 Basis for Confidence
	2.3.6 Rationale for Potential Impact
	2.3.7 Further Reading

	2.4 More Mature Domain-Specific Software Development Frameworks
	2.4.1 Rapid Framework Adoption
	2.4.2 Compositional Testing
	2.4.3 Conflict Resolution in Multi-Framework Composition
	2.4.4 Maturity Level
	2.4.5 Basis for Confidence
	2.4.6 Rational for Potential Impact
	2.4.7 Further Reading

	2.5 Moving Target Defenses (MTD) and Artificial Diversity
	2.5.1 Compile-Time Techniques
	2.5.2 System or Network Techniques
	2.5.3 Operating System Techniques
	2.5.4 Maturity Level
	2.5.5 Basis for Confidence
	2.5.6 Rationale for Potential Impact
	2.5.7 Further Reading

	3 Measures and Metrics
	3.1 A Taxonomy of Software Metrics
	3.2 Software Assurance: The Object of Software Metrics
	3.3 Software Metrology
	3.4 Product Metrics
	3.4.1 Existing Metrics
	3.4.2 Better Code
	3.4.3 Metrics and Measures of Binaries and Executables
	3.4.4 More Useful Tool Outputs

	3.5 Further Reading

	4 Summary and Community Engagement
	4.1 Engaging the Research Community
	4.1.1 Grand Challenges, Prizes and Awards
	4.1.2 Research Infrastructure

	4.2 Education and Training
	4.3 Consumer-Enabling Technology Transfer
	4.3.1 Government Contracting and Procurement
	4.3.2 Liability
	4.3.3 Insurance
	4.3.4 Vendor-Customer Relations
	4.3.5 Standards
	4.3.6 Code Repositories

	4.4 Conclusion

	5 References

