SECRET

Subject: Report on Atomic Bomb Damage Evaluation.
Memo to Lt. Col. J. A. Derry

1. Copy Number 1 of the subject report is transmitted for delivery to Maj. Gen. L. R. Groves. This report, prepared by Dr. W. G. Penney, is entitled "A Report On the Pressure Wave Caused By the Atomic Bomb Explosion in Hiroshima and Nagasaki." Included with the report are two sets of photographs showing the damage caused in each city as well as certain specific objects and structures which were used as a basis for calculating the hydrostatic pressure and wind velocity resulting from the explosion. A key explaining the photographs is also included as well as maps of each city.
2. Copy number 2 of this report, with one set of photographs, has been transmitted to Sir John Anderson in London and Copy number 3 is in the possession of Sir James Chadwick in Washington. The final draft of this report was completed on the night before Dr. Penney's scheduled departure from Lond on for Washington. Copy number 1 was proofread subsequent to release of copies number 2 and 3 . A number of additions were made to Copy number 1 at that time so that it is the only complete copy in existence.
3. The British government would like to release this report to certain of its high policy officials but have agreed at Dr. Penney's request to limit availability of the report to Sir John Anderson, Sir James Chadwick and Dr. Penney until such time as General Groves grants approval to further distribution. It is Dr. Penney's opinion that access to the complete report should be limited to the British Chiefs of Staff. The report is arranged in such a form that further distribution of limited portions of the report could be made. Dr. Penney has requested for Sir John Anderson that General Groves grant formal approval for further distribution of the report and in form Dr. Penney of the limitations which he wishes placed on such distribution.
4. Dr. Penney has also requested that a copy of the Master report in General Groves possession be furnished to the T.A. group at the time approval for further distribution is granted.

D. G. Sturges, Capt. C.E.
$N 7$ tinges

Copy Numberl

SECREI

A prapore or min rinssurs wave causmo By TEB ATOXIC BOMB mestosion in

HIPOSHIMM ATD MACASNKI.

BY
DR. 7.0 . F.
C.S.A.R

Copy No 1., wh 2 sets of photogroples Nay Ger LRCAM Coley No 2, . 1 A Si Johme Anderm
Copy No 3, "I ". ". .. Sir Jamenchadn

SECRET

23nd Jemuary 1946.

Among the observers of tho Phahattan District team that wont into Hiroshima and Nagasaki during September and October, 1915, was a malt trow to study the (U.S.N)
 Dr.R. Server. Ho olear program was possible before the of ties had been studied; rather, the tom walked about more or leas at random, until some shgniftoant feature was noticed. Notes were made, and gradually the search become organised and directed, The Report now presented is the result of a study of the notes taken Jointly by all three observers, and of tosh ts made by the waiter (Dr, 7, Givenney) on samples collected during the course of the search through the tiro of these Holy, either in the nature of consultation, or in direct tests, has been given by:-

Road Research Iaboratory, Hariondsmorth
Rational Physical Laboratory, Tedaington
Olvil Engineering Department, Imperial College of Sctenco,
Forest Products Research Laboratory, Princes Pisborough, and, of course, by the Manhattan District, which has provided oxcoliont fays, scientific reports from Los Alamos, and assistance in the persons of Commander H. River ($\mathrm{U}_{5} \mathrm{~S}_{2} \mathrm{~N}_{0}$) and Captain D, Sturizes (U_{5} s.Aviy).

Main results

The following are considered to be tho main results-
(1) The bombs performed exaotiy according to design in their height of buryat.
(2) The bombs were placed in such positions that they could not have cone more damage by any alternative bursting point in of thor ai ty.
(3) The heights of burst were correctly chosen having regard to the the of destruction 1 t was desired to cause. The extent of the blast damage was exactly that prealoted.
(4) The actual tonnage of $\mathrm{T}_{0} \mathrm{M}, \mathrm{I}_{0}$, which would have caused the game blast damage was 5000 in 15iroghtma and 20,000 in Magaeali.
(5) The information collected would enable reasonably accurate predictions to be made of the blast damage 11 kely to be caused in any oi ty mere an atomic bomb explosion was conceivable.

SECRET

Among the observers of the Manhattan District team that Font into Hiroshima and Nagasaki during September and October, 1945, was a small tan to study the (U.S.N) blast effects. The team consisted of Drop, I. G. Penney, Ensign Co T. Resnolasjana Dr.R. Server. Ilo clear programme was possible before the cities had been studied; rather, the team walked about more or less at random, until some significant feature was noticed. Notes were made, and gradually the search became organised and directed. The Report now presented is tie result of a study of the notes taken jointly by all three observers, and of tests made by the writer (Dr, T. G.Yenney) on samples collected during the course of the search thought the two ai ties. Help, either in the nature of consultation, or in direct tests, has been given by:Road Research Laboratory, Harmondsworth

National Physical Laboratory, Tedaington
Civil Engineering Department, Imperial College of Science, Forest Products Research Laboratory, Princes Pisborough, and, of course, by the Manhattan District, which has provided excellent naps, scientific reports from Los Alemos, and assistance in the persons of Commander H. Rivers (U. S. N.) and Captain, D. Stories (U. S. Army).

Main results

The following are considered to be the main results:-
(1) The bombs performed exactly according to design in their height of burst.
(2) The bombs were placed in such positions that they could not have done more damage by any alternative bursting point in either oi ty.
(3) The heights of burst were correctly chosen having regard to the type of destruction it was desired to cause. The extent of the blast damage was exactly that predicted.
(4) The actual tom mage of $\mathrm{T}_{0} \mathrm{~N} . \mathrm{I}_{0}$ which would have caused the same blast damage was 5000 in Hiroshima and ${ }^{\prime} 20,000$ in Nagasaki.
(5) The information collected would enable reasonably accurate predictions to be made of the blast damage likely to be caused in any oily where an atomic bomb explosion was conceivable.

Even an intelligent observer could not at once say from inspection of Magasali and Hiroshima which of the two bombs was the more powemful, Dhom some points of view, inceea, Hiroshima was worse than Magasali, The fire damaze was much nore complete; the centre of the oity was hit and overything but the reinforced concrete buildings had di sappearea. A few strong buildings left in a ciesert of clear swept charreâ remains was a termifying sight. At Magasalai, there were no strong buildings just underneathe The danage to the Mitsubishii Arms Works and the Torpedo Plant was speotacular, but not orerwhelming There was something left to see, and the main contours of the builaings were stall normal.

One could stand in the contre of Hiroshima and get a view of the whole city, but this was not possible in liagasaki, because of hillso firoshima was left in one's mind as a vast expanse of desolation; nothing as vivid was loft in one's memory of Nagasaki.

When one came down to details, however, striking differemces appeared. Trees were down in both cities, but the large trees which fell in Biroshima were uprooted, while sore of those in Nagasali were actually snapped off. A fow reinforced concrete buildingss were smashed at the centre in Hirosinima, but in Nagasaki equally heavy damage could be found at $2,000 \mathrm{ft}$ then one studied small things as squashed tin cans, dished metal plates, bent or snapped poles and the like, one came to realise that the Nagasaki bomb was, in fact, much more monech that the Hiroshima bomb. A large part of this report is devoted to explaining these details.

Height of Burst: Size of Ball of Pine

Japanese army observers, watching through instruments, gave the height of burst in $\# i r o s h i m a ~ a s ~ 550 \mathrm{~m}(1800 \mathrm{ft})$, and as $500 \mathrm{~m}(1650 \mathrm{ft})$ in Nagasaki.

An independent estimate was possible for the Hiroshima burst from the geometry of some flash burns on the walls in the Post office. Pictures H'94, H 95 show the burns. An unburnt "white" shadow several feet long was clearly visible on the beaver board of $\$$ wall; the shadow was that of the horizontal parts of a metal window frame. (The shadows of the blind cord appear in the photograph, but were not useful for estimating the height of burst). Similar shadows were throw on the bacfor boards of the side malls of the bays in which two other windows of the same design were placed. From the geometry of the shape of the shadows, the position of the Post Office with respect to the point of explosion, and the orientation of the shadows and windows, Dr . R. Serber calculated that the height of burst was 1800 feet:

The shadows had distinct penumbra, the dimensions of which could be measured fairly well. Dr. Sarber calculated that tho size of the mall of fire" when it was giving its maximum charring effect on the rall, was 300 feet diameter. It is interesting to note that this is much leas than the maximum diameter. The time to reach the maximum charring radius is only of the order one millisecond.

Bash Burns

Telegraph poles very near the point on the ground under the centre of the explosion were often left standing. The side exposed to the flash was severely charred. By marking on a map the direction of charring, and doing this for about five or six cases, the centre of burst could be placed within about 100 feet. Confirmation of the centre was also obtained by noting the direction in which poles had been bent, or chimney stacks thrown.

At Mroshima, flash burns on telegraph poles were visible up to a radius 9500 feet. At Mheasaki, burns ware visible up to 11,000 feet

An interesting effect was noticed in Nagasaki. The conto of bung was about central in a valley running X - S. Many trees grew on the lopes of

SECRET

the adjoining hills. The leaves on these trees were slightly scorched, ard. the general appearance of the vegetstion was that of autumn. The contrast with the intense fresh green colouring of the leaves of trees in the hills further away was very striking. The autumnal appearance of the trees extended to about 8,000 feet.

Shrubs and small plants quite near to the centre in Hiroshima, although stripped of leaves, had obviously not been killed. Many were throwing out new buds.

Ground Shook

The ground shock in both corteses was very slight. Water pipes still carried water, and where leaks were visible, they were mainly above ground. A few cases were found where leaks were present below ground, but the explanation was that a will overtumed in the blast, and dislocated the ground, thus breaking the pipe.

Morale Effect

The effect of the bombs on the morale of the Japanese in and around the cities
two centres was shattering. The Japanese apparently before the two bombs were dropped, realised that they were outclassed in war but they did not realise how hopelessly until the bombs fell. The danger of radioactive contamination on the ground terrified the whole population, and had resulted. in only spasmodic attempts at clearing debris.

Blast Damage to Human Beings

While the analysis of the medical side lies oowrletely outside our coo province, γ comments seem worth making. The first is that the pressures developed on the ground were not sufficient to kill by straight compression more than those people very near to the centre (approximately a radius 1500 ft in Nagasaki, and not at all in Hiroshima). On the other hand, the tremendous drag of the wind even up to distances of the order of 1 mile must have resulted In many multiple fractures and deaths. Picture N 90 perhaps illustrates the point. Large pieces of the prison wall were flung 80 feet; Probably some of them went 30 feet high before falling. The chances of a human surviving such treatment are probably small.

Bine Damare

The fire darnago in both cities was tremendous, but was nore complete in Hiroshima than in Nagasali. The effect of the fires was of course profoundiy to change the aypearance of the oities, and to leave tho central parts bare, except for the reinforced buildings, and objects such as sefes, chimney stacks and pieces of twisted sheet matal. However, no special significance was attached to the fire damage, since it was a property more of the cities themselves than of the bomb.

No large fires were started instantly by the bomb. Straw, and many grass mats which were hanging outside to air, were ignited imnediately and no doubt some fires were started in this way. A more likely cause were the charcoal braziers, one of which was to be found in nearly every house. Sore trees were.ignited by the heat of the explosion. "Picture H 93 shows a clear case of the flash ignition of a tree.

Nany peculiar effects due to "fire winds" were ubserved by the Japanese, but were not recorded very accurately. Opeltyister" in particular thenent people into one of the rivers at Hiroshima. Wind velocities up to $50 \mathrm{f} / \mathrm{sec}$ (a low figure, probably often exceeded) were recorded, compered with $6 \mathrm{f} / \mathrm{s}$ before the explosion.

Hoavy fire danage extended about 8000 ft S of X in Nagasaki, and to about 6000 ft circularly about X in Hiroshima.

Several isolated fires were found in both oities up to 9000 ft where the cause was clearly a brazier or something similar inside the building. Sometimes
a hill protected the building from flash burn; sometimes a large building, and the cane could not have been flash ignition of some tinderlike material.

The most remarkable escape from fire damage was the Torpedo works at Nagasaki. The whole framework was wood, but there was no fire in the main factory. Several small sheds (the paint shed in particular) aid oatch alight and were completely burnt out. .

Iong Range Blast Damage

There was no consistency in the long range blast demage. One would think that one had reached the 1 imit , and then 2000 ft further away would find further evidence of damage.

The most impressive long range damage was the collapse of some of the
barrack sheds at Kamigo, 23,000 ft S of X in Nagasaki. It was remarkable to see some of the buildings intact to the last detail (including roof and even the windows) and yet next to them a similar building collapsed to ground level.

The limiting radius for severe displacement of tiles in Nagasaki was about $10,000 \mathrm{ft}$, although isolated oases were found up to $16,000 \mathrm{ft}$. In Hiroshima, the limiting radius for severe damage to tiles was about 7000 8000 ft . However, sven at KATMOIII, distance $26,000 \mathrm{ft}$, some tiles were displaced. (Possibly these were the results of the typhoon and not the atomic bomb)

The Mech Y

Only by a coincidence would it have been possible to detect any evidence of the variation of pressure up. the stem of the Y . There was a very large chimney stack in the Mitsubishi Arms Works, $3,500 \mathrm{ft} \mathrm{S}$ of X . The chimney was badly cracked, but more interesting to us was a steel ladder running from top to bottom. The stack was at least 120 ft high. The ladder was bowed between the supports, which were at about 8 ft centres. No variation with with height in the bowing could be detected. The reason was that the ladder had bent as far as it could without stretching. The shock at the rivets had all been taken up, and to produce any further distortion a very considerable force would have been required.

The ladder was not suitable for extincting the peak pressure, because the air flow was very largely controlled by the chimney, and there seemed no mercurate way of allowing for this.

At Mogi, a distance of seven miles, over steep hills at least 600 feet high, about 10% of the glass came out. In nearer sequestered localities only 4 miles from the explosion, no damage of any kind was caused, An interesting effect was noticed at liogi, Zyo-witnesses said that they thought a raid was being made on Mogi. One big Mash was seen, then a loud roar, followed at several second intervals by half a dozen other loud reports, from all aireotions.

These were obviously reflections from the hills surrounding Mosh.

Shielding Brecots

Because of the great height of burst, one would not have expected to find any evidence of shielding of one building by another, at least up to a radius $2,000-3,000 \mathrm{ft}$. 'It was in fact difficult to find any evidence at any distance of such shielding. One might perhaps say that there was a little shielding of the building behind the Administration Building of the Torpedo Works by the Administration Building itself, but the effeot was very slight. There was also sove evidence that the group of buildings comprising the Medical School in Nagasaki did afford each other mutual protection. On the whole, however, shielding of one building by another was not noticeable.

Hills were effective in giving shielding, but only at such distances that the blast was becoming oritical for the structure. Houses built in ravines at Nagasaki pointing well away from the centre of explosion survive unscothed, but other at similar distances in ravines pointing towards the centre were upduly damaged. To the north of the Torgedo Works was a small hamlet $8,000 \mathrm{ft}$ from the centre. One could see a distinct variation in the intensity of damage acrossthe hamlet, corresponding with the shadow thrown by a sharp hill.

The best example of shielding by a hill was in the S E direction from the centre. The damage at $8,000 \mathrm{ft}$ to buildings approximating to the European type was mostly light C, namely 50\% of windows and light plaster damage. These buildings were on the reverse side of a steep hill (Suya Park) At the same distance to the S.S.S. the damage was heavy C to light B, namely all windows and frames, doors, havy plaster danage and a few oracks in the briclowork. The contragt may be illustrated by the fact that at the Prefectural Office in S.S.E. at $10,800 \mathrm{ft}$ the damage was bad enough for the building to be evacuated, while at the Nagasaki Normal School (see picture N. 101) to which the Prefectual office had moved, the damage was only D, or very light C.

There was one other peculiar type of shielding, best exhibited by the workers houses to the N of the Torpedo Flant at Nagasaki. These were 6,000 $7,000 \mathrm{ft} \mathrm{N}$ of $\mathrm{X}_{\text {. }}$. The damage to these houses was nothing like as bad as in those $1,000 \mathrm{ft}$ further away. It seomed as if the great destruction caused in the Torpedo Plant had weakened the blast, and the full power was not restored.

Radii of A, B and C Damage.

It is customary when describing the damage caused by a bomb, to give the radii of A, B and C damage. Useful though these radii have proved to be, it is not thought that they are very significant for an atomic bomb. The height of burst must be chosen for a particular purpose; if this is achieved, the concomitant damage is relatively unimportant. Huwever, the type of damage caused by the Nagasaki bomb over level ground nay be described as follows.
(1) Window damage complete to $12,000 \mathrm{ft}$; some damage up to $/ 00,000 \mathrm{ft}$ or even more.
(2) Plaster damage (ceiling and malls) very heavy at $9,000 \mathrm{ft}$, moderate at $12,000 \mathrm{ft}$ and filet at $15,000 \mathrm{ft}$.
(3) Roof damage to slate or tile, heavy at $10,000 \mathrm{ft}$, light at $15,000 \mathrm{ft}$.

Sa Sheet metal roofs, depending on quality and orientation, bit approximately the same as for slate or tile.
(b) Window frames and doors. Heavy at $8,000 \mathrm{ft}$, light at 12,000 ft .
(5) Nine inch brick wall surburban house. Tola crooked lesvily at $5,000 \mathrm{ft}$, some cracks at $6,000 \mathrm{ft}$, few orecks at $7,000 \mathrm{ft}$. \#ntouchad et 8,000 ft.
(6) Reinforced concrete buildings, $10^{\prime \prime}$ malls, $6^{\prime \prime}$ floors and $4^{\prime \prime}$ roof, tiro
fo dy damped

Minor structural aismage at $\dot{4}, 000 \mathrm{ft}$.
(7). High quality steel frame building. "No damage to frame but panels blown
in up to 1500 ft .
(8) Churches of brick, 18^{m} walls to acoomendate 1,000 people, completely destroyed up to $3,600 \mathrm{ft}$. Isth $12^{\mathrm{\prime} \mathrm{\prime}}$ walls, ovehtetely aleetroyed up to $5,000 \mathrm{ft}$., tor g frobelt coleqed and flem of l.
(9) Gas holders dished in up to 7,000 ft.

Thile the cities of Hiroshima and Nagasaki were being explored, several indepondent possibilities wore always kopt in mind for spotting something which would provide an estimate of the peak pressure. Naturally, in the course of time, experience was gained, and the search for likely objects became highly selective. From this point of view it was unfortunate that Nagasaki was visited before Hiroshima. There was a great wealth of data in Hiroshima, in remarkable contrast with the scaroity in Nagasali. In the latter city for example, we were unable to find a single flagpole or lightning conduotor just bent over by the wind of the explosion; in Hiroshima, we had the choice of about twenty. If our visits to the two cities had been in the reverse order, wo might have missed a few of the observations actually made in Hiroshima but this loss we could well afford: on the other hand, we might have gained two or three more reliable figures for Nagasaki, and thereby improved our estimates of the tonnage in this city. Principles of the Interprotations of the Observiations \rightarrow

We explain the prinoiples underlying the interpretations of observations which led to estimates of the peak pressure. The mumerical results are given later in this section.

Grushed Metal Cans

One of the simplest methods of estimating the peak pressure was from the crushing of oil drums, gasoline cans or any other empty thin matal vessel with a small opening. The essumption here mede is that the blast wave pressure came on instantaneously, the resulting pressure on the can was more than the case could withstand, and the walls collapsed inwards. The air inside was compressed adiabatically to such a point that the pressure inside was less by a cortain amount that the pressure outside, this amount being the pressure difference outside and in that the walls could stand in their crumpled condition. The uncertainties involved are first, that some air rushes in through any opening that the can may have, and thus holp to build up the pressure inside; and second, that as the pressure outside falls, the air inside cannot escape, sufficiontly fast to avoid the walls of the can boing blown out again to some extent. Both unoertainties are such that estimates of pressure based on this method are on the low side, i.e. they aro under estimatos.

Let V_{0} be the initial volume of the can, V_{C} its crushed volume, and P_{C} psi the mechanical strength against crushing in the collapsed position. Then the peak pressure P is taken

$$
\begin{equation*}
P \geqslant P_{0}+P_{0}\left[\left(v_{o} / V_{0}\right)^{\gamma}-1\right] \tag{1}
\end{equation*}
$$

where $p_{0}=14.7 \mathrm{psi}$, that is atmospheric pressure, and $\gamma=1.4$ is the ratio of the speotfic heats of air.

The percentage loss of volume is $100\left(1-V_{\delta} / V_{0}\right)$, and for convenience and use in this report we have plotted in Figs. I and 2 the rise in air pressure inside a can, namely $\left.P_{0}\left[\left(v_{o} / V_{0}\right)^{1 \cdot 4}-1\right)\right]$ in pounds to the square inch against the percentage loss in volume. Also given is the compression ratio $\mathrm{V}_{\boldsymbol{\rho}} / \mathrm{V}_{\mathrm{c}}$. For example, from Fig. I , it is seen that the rise in air pressure corresponding with a 20 per cent. loss of volume is 5.3 psi .

It is worth pointing out that a drum or tin can can withstand for a short time considerably more then its critical static crushing pressure. The sides give way because of instability, and the instability requires time to grow. Consequently, one might sometimes find cans intact at places where the peak pressure was higher than the static strength of the can. If, however, the can did give way, the amount of distortion would normally be considerable, because the strength drops censtamably once dents have appeared. One can easily see by a simple calculation that the time required for a small dent to grow to a large one is very small. For example, if a dent has been established, and there is an unbalanced pressure on the two sides of the dent of 1 psi , the acceleration is very large. If the thickness of metal is 0.020-inch, then the pressure 1 psi moves the metal 2 inches from rest in five milliseconds.

A modification of the crushed tin can is the crushed metal tube. Many examples of this were found, but not a single one of much quantitative significance. The best perhaps, was a rectangular copper drain pipe near the Shin Aioli Bashi in Hiroshima. However, even for this; the sample brought back for test indicated a peak pressure 35 pai never back for test indicated a peak pressure 35 psi where the true value was λ^{20} Pipes suffer from two disadvantages. The first is that the pipe does not crush equally along its length; unless one could get an estimate of the loss of volume along the entire length, often as much as 20 feet, one could not tell what the pressure inside was. Often, the pipe was not air tight, thus making any estimate impossible. The second disadvantage is that the pipe

The mode of wellifes (mia blet ble whene at which collye
 whil the witer las not yet lad "la gharbinty to conniter. The critich load whid cames collife, and the rack of collexte. of ghidral dils have been camidered Iy senctiell and octers (see lave's Elaitivify). De obleustans mode on collofied thums are cans agree unt theng to this event, etst to lort
 diems) collofed on $x=3$ harmavic, whe An long then gaike (te taper cartaners in of aty offeri, thershemi) colloped on the $x=2$
is vilnerable to the wind pressure; the pipe either strips off in the wind, or changes volume sufficiently to make estimates of the peak prossura quite unroliable. A gocd example of the tremendous force of the wind in the Nagasald explosion is shom by the thin sheet motal drain pipe on the walls of the Administration Builaing of the Mitsubisht Torpedo Forks, 4050 feet from X. Picture $N 56$ shows this pipe, arushed by the initial peak prossure and then whipped about in the wind.

Visual Estimates

It proved possible to make one or two absolute estimates of the peak prossure, as well as several comparisons betwaon Nagasaki and Hiroshima simply by inspection of the nature of the demage. Comparison was also made with the damage at the Macdoneld Ranch in New Mexico, oaused by the Mrinity Explosion.

Mambranes, Plates and Pancls

Paper Panols

Knowing that the Japanese workers homes use many paper panels as partitions, much was hoped for in the way of getting the oritical distance at which these panols failed. However, our luck in this respect was poor. At Magasald, we thought we had found a beautiful example at the Kamigo barracks, 26,000 feet to S of X , but on chocking with the housoholder, we discovered that the "demage" was caused by a "small boy". The panel had been exposed "side on" to the blast. The bottom panels were gone; these of course were the ones which the child could reach. The upper panels were intact. The panels could stand about 0.5 psi , (see later in the Tests Section) and hence the peak pressure was not more than this. From the collapse of a wall supported by rather flimsy wooden uprights wo estimated that the peak pressure was greater than 0.4 psi. Hence we have a good bracketing of the peak pressure here.

One almost perfect example of the failure of paper panels was found 12000 ft . ES3 from X in Hiroshima. The owner of the house exaplined cractly how the paper screens wers at the time of the explosion. They were "side on within 1°. Ho was indoors and saw the pancls blow in, and with it, tha whole framerork carrying the panels. About 80 per cent. of the paper panols had torn. Tho rest werc intect, and half a dozen pieces wore brought back for test.

Metal sheets

Two good examples of the dishing of a metal shaet were obtained, one in Hiroshima and one in Nagasalsi. The intergetation of the observations on the aishing of metal plates can apparently only be done with the eid of exparinent. The theory of the olastic plastic bohaviour of a matal plate firwly clempea at the edges is known from the work of Kirkrood and Taylor, but the corresponding problem for treely supported edges has not been considerad. There is of course, a pronounced difference in the magnitude of the forces needed to cause a beno in a metal plate with no stretching of the surface, and those to cause a dishing, with the accoarganying stretching of parts of the plate.

An old safo, of poor construction caupared with molern standards, 200 foet from X in Hiroshima, was dished in 4 inches. The central long edge wes free; the two short edges were simply supported except for the two hinges. A rodel, was made of this safe door and tests inaicate that the peak pressure mas about 35 \% psi.

A well-made tool cabinet was found at Nagasali 2300 feat from X. The top had dished in $\frac{3}{4}$-inch. In my preliminary report, an incorrect sesessment was made of this observation; the proper way to treat the problea is given in the Tests Section, and gives the penk pressure as pilodt 30 pai.

Class Panel

About one half of the glasa panels of a mail-ohute 600 feet from X at Hiroshima were beoken by the, hydrostatic prossume of the blest. Aghey good Vory accarzen value oun bo obtained frou this observation; enecopethet the peak pressure was between 20 and 30 psi, aud the feoberle volue ras 25 psi Conorete Panols and Air Fight Speces on Roverse Side

Five exemples ware found of a roinforcad concrate panel or alab yielding under the hydrostatic pressure of the blast. In each case, tha pressure on the reverse side was practicelly unaffected. The examples aro, (1) Noor of bank 250 feet frea X in Biroshima: (2) Sice mell of basement in Chamber of Comerce Hiroshima 1000 feet from X: (3) Floor of Redio Station Hiroshima
II. 4

SECRFTT

3100 feet from X : (4) Wall panels of Transformer Station Nagasaki 3400 feet from $X_{:}$(5) Moor of Administration Building, Mitsubishi Torpedo Forks, Nagasaki, 4050 feet from X.

Of these (4) was of little value, because the pressure was much beyond critical. All the central portions of the panels had been torn away, and the edge wore pointing inwards at 30°. Panel (2) was a very good example and gave a reliable figure. Panel (3) was valuable, not so much because it gave a good value, but because it was very similar to Panels (5). The pressure on (3) could be very closely determined from evidence of other types (most precisely from the bending of flagpoles); and thus a simple and small correction gave a most valuable point for panel (5) in Nagasaki.

The details of (1) - (5) are given later in the Tests Section.

Wooden Floor

- Another variation on the failure of a panel was found in the telephone exchange 3800 feet \mathbb{I} of X in Hiroshima. The joints in one panel of a wooden floor, covered by mats, failed. The floor was taken up and its construction noted. Quite a good value was obtained for the peak hydrostatic pressure in this building.

Barrack Hals and Tall of a Timber Store Barn

The wooden supports of a practically airtight barn in Hiroshima, and the wooden supports of the walls of two buildings in the Kamigo barracks at Nagasaki broke under the hydrostatic pressure of the blast. From the details of the construction, estimates of the peak pressure were made.

Drag Problems

An interesting series of observations was made on the bonding of steel flagpoles and lightning conduotors in the wind from the explosion. Similar problems were the bending of steel ladders, the snapping of telegraph or power line poles and the failure of smoke stacks.

The drag on an object of area A in an air stream of density ρ and mass velocity A is by definition FA , where

$$
\begin{equation*}
F=\frac{1}{2} C_{D} \rho^{u^{2}} \tag{2}
\end{equation*}
$$

and C_{D} is the drag coefficient. For a pipe of diameter D and length L exposed

$$
\mathrm{A}=\mathrm{mL}
$$

The drag coefficient is a function of the Reynold's number R for the particular values of D_{2}, P_{1}, and u_{0}

$$
\begin{equation*}
R=\frac{D \mu \rho}{\mu} \tag{3}
\end{equation*}
$$

and μ is the coefficient of viscosity of the air, at the density and pressure prevailing.

Values of C_{D} have been measured in various wind tunnels. It has been found that C_{D} depends to some extent on the "roughness" of the surface. A pipe 1-inch diameter whose surface has been covered with carborundum powder sometimes gives as much as twice the drag as one whose surface has been highly polished. Of course, these are extreme limits, and in the examples with which we are concerned, the drag coefficient can usually be estimated within 10 per cent. The deduction of the value of u, and hence of the peak shook wave pressure leads to a value with an ecror of not more than 3 per cent. due to the uncertainty in C_{D}.

The bending moment at the base of a vertical pole subject to the horizontal air stream V is

$$
\begin{equation*}
\mathrm{M}=\frac{1}{2} \mathrm{D}^{2} 5 \tag{4}
\end{equation*}
$$

This is to be equated to the yielding bending moment of the pole.
If the pole is a tube of outer and inner radii a and b, and T is the yiolding tension of the material, then the yielding bending moment M is

$$
\begin{equation*}
M=4 T\left(a^{3}-b^{3}\right) / 3 \tag{5}
\end{equation*}
$$

Alternatively il can be measured by experiment. Thus; a piece of a steel tube flagpole from Hiroshima was brought baak and M measured directly. The agreement with formula (5) was very olose, assuming a value for T of 20 tons/sq,inch.

In the case of telegraph poles, samples of the wood from poles at Nagesaki were brought back for identification, and the value of M for a standard pole of 8 inches diameter was provided by the Forest Products Research Iaboratory at Princes Risborough.

Now it is necessary to consider a correotion that sometimes had to be applied because the yielding of the pole was more than could be called "just aritical".

If I is the moment of inertia about the bass, the equation of motion while yield is occurring and the polo is accelerating is

$$
\begin{equation*}
I^{\prime \prime}=\frac{1}{2} M^{2} F(t)-M \tag{6}
\end{equation*}
$$

The acceleration drops to zero when the right hand side vanishes. The momentum of the pole then carries the pole further, and the acceleration is negative. The equation of motion in this phase is

$$
\begin{equation*}
I^{\prime \prime}+\frac{1}{2} M^{2} F(t)=M \tag{y}
\end{equation*}
$$

The motion stops when $\dot{\theta}$ reaches zero again. The bending moment due to the weight of the pole has been neglected. This is a satisfactory approximation, since it is a small correction to a correction.

Since we are concerned only with the motion near the peak of the pressure wave, we may write

$$
\begin{equation*}
F(t)=F_{0}-k t \tag{8}
\end{equation*}
$$

With this simplification, the accelerating phase and the decelerating phase are symmetrical, and the displacement at the end of the accelerating phase is just one half of the final displacement, and $\%$ is zero at the central position.

Solving the equation for the accelerating phase subject to the conditions

$$
t=0 \quad \theta=0 \quad \theta^{\prime}=0,
$$

and writing ϕ for the observed final displacement, reached at time T we find

$$
\left.\begin{array}{l}
T=(2 N 0 / k)-\left(4 M / D^{2} k\right) \tag{g}\\
F_{0}=\left(2 M / D^{2}\right)+\left(12 I / / D^{2} T^{2}\right)
\end{array}\right\}
$$

Wo write

$$
\begin{equation*}
F(t) \quad F_{y}=F_{0}\left(1-\frac{2 \delta u}{u_{0}}\right) \tag{6}
\end{equation*}
$$

where δu is the change of mass tolooity in the time t which has elapsed since the shook wave struck the pole.

Now insert the Riemann relationship for the motion behind a plano shook

$$
\begin{equation*}
\delta u=5(c-c) \tag{1}
\end{equation*}
$$

where c is the velocity of sound at the pole, and C the velocity of sound just behind the shook when it strikes the pole.

Substituting the Rankine-flugoniot equation for u_{0}, and making some very close epproximations, it is found that

$$
\begin{equation*}
P(t)=P_{0}\left[1+\frac{2 S_{D}}{P} \sqrt{\frac{P_{O}}{P_{0}+P}}\right] \tag{12}
\end{equation*}
$$

where P_{0} is atmopleiv Aresmere, ansi P is the short overpressure, and sp is the charge in prese in tome t.

SECRET

The detailed shapes of the pressure-tine curves at vari us meiti are ot knom acourately for air burst high explosive charges. However, the peak gresaure and positive ifrgulses are known fairly well. For our jurposes, we may wite with suffioient approximation

$$
\begin{equation*}
P=P_{0}(1-\alpha t) . \tag{13}
\end{equation*}
$$

We must consider how the best choice of α may be made. Our aplications are directed towanas estinating corrections to the peak rressure from observations or drag problems involving a finite arount of yield. Possibly the firat half of the arua of the rositive pressure-time curve is involved. We decided that the most suitable method of estimating α was to use (12) mad chocse α so that the positive isfinse I inik yle yager vaive.

Rirychfelder, Littler and Shasad (LA 316) have given the best estimates possible for the peak pressure and positive ingalse from large eliarges burst on or near the gro ind. Their figures are adopted, but odified in the following may. It is known that up to an optimua height air burst charges give larger peak pressures and larger ibyulees at ground level than do oharges at ground level; furthemore the positive impulse for a given peak pressure level is also greater. Therefore we take Hirschfolder, Ll ther and Sheard's figure for positive frpulse against peak pressure, and add 15%. In this way we believe we have a good approximation to the bast values. The table below has been constructed in this ray. The figures 5000 tons and 20,000 tons have been chosen as appropriate, since the data before the present type of corraction has been aplied indionte that these are the equivalent tomages for Hiroshima and Ma asaki. The values of I correspond with 5,000 tons; α is ziven for 1800 ft . air burst of 5,000 tons and 20,000 tons.

TABLE I

P p.s.i.	6	8	10	16	20
I p.s.i. sec	1.41	1.61	1.78	2.20	2.44
1.15 I	1.62	1.85	2.05	2.53	2.61
$\left(5000^{\text {² }}\right)$	1.85	2.16	2.44	3.16	3.66
$\left(20000^{\text {² }}\right)$	1.16	1.36	1.53	1.99	2.25

the To the order of magnitude in which we are interested in equetron (10), $\delta p / P=\alpha t$,
and

$$
F(t)=F_{0}+2 \alpha t P_{0}\left[p_{o} /\left(p_{0}+P\right)\right]^{\frac{1}{2}}
$$

Reforring back to (8 ; , we see that

where F_{0} is given by ($\%$).

For simplicity, we shall consider only the case where the blast is normal to one of the faces. If a stone was actually overturned by a blast not nomad to a face, th n the estimated peak pressure is greater than that calculated by the method given below.

One difficulty in applying observations on overturning of stones to estimate the blast is uncertainty in the amount of "stiotion". The blast docs its work very quickly, and it is not quite clear that the hydrostatic pressure on the exposed faces is the same as that in the air cavities under the base. Mo doubt, variations in the data on any one type of stone in a shrine way to some extent be attributed to a variable striction, but the variations were surprisingly small. A second difficulty was that one could not always be sure that a stone had overturned and not slipped. It ap: lying a push at the half height, one could usually decide that the stone would overturn under a steady push much more easily than it would slip. An impulse however mi th t well callie sighing rather than overturning; certain large stones of mass $800-1000 \mathrm{ib}$. and of cubical shape had certainly slipped.
The examples giveronn were almost certainly cases of overturning.
Usually the stones were inset into a little ho low, effectively preventing slipping.

Stones of almost the sane dimensions as the ones were overturned for varas; probably the stone nearly toppled, swung back and the reverse wind of the suction phase toppled it the other way.

Jüst as with telegraph poles, chimney sticks and other objects affected by the wind, there was, a region near X (about 2,000 It radius) where the blast wave was not a simple vertical one, running horizontally. One can do little with theory in the central region, and :e therefore confine ourselves to observations further out.

The theory of the overturning of a rectangular stone in a blast wave leads to some differential equations which could only be accurately solved by numerical methods. However, the data do not justify an elaborate investigation and we made some reasonable approximations.
Let θ be the angle between the vertical and the line joining the centre of gravity to the turning edge. Let I be the moment of inertia about this edge, M the mass of the stone, Z the height and X the length of the side of the bise not the turning edge. The width of the stone does not enter, except finally in the Reynolds number, and we omit this, assuming effectively unit width. Using absolute units, the equation of notion wo approximate by

$$
\begin{equation*}
2 I \ddot{\theta}=-E Z^{2}+M \operatorname{tg} Z \theta \tag{15}
\end{equation*}
$$

where F is the drag pressure per unit area as a function of t. Writing as we did before in the equation of motion of the plastic yield of a rod

$$
F=F_{0}-\rho_{0} t \text {, }
$$

the equation of motion then integrates. The boundary conditions are

$$
\begin{aligned}
& t=\theta \hat{\theta}=\mathrm{J} / \mathrm{z}, \dot{\theta}=0 \\
& \text { The solution is }
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& m^{2}=3 s / 22
\end{aligned}
$$

To avoid transcendentals, and with accuracy equivalent to that used in writing the equation of motion, we expand 0 as a power series in t, up to terms in t^{3}.

If the stone is to topple, 0 must reach the value zero, and the oritioal condition is that O just reaches the value zero with zero velocity i.e. $\dot{\dot{O}}=0$ where $0=0$

Doing the algebra, it appears that the time $T \leftrightarrow$
to reach the toppling position is

$$
\begin{equation*}
T=\frac{2 M g}{2 k}\left(\frac{2 F 0}{1 g}-\frac{x}{2}\right) \longrightarrow \tag{18}
\end{equation*}
$$

where K is the mass.
The value of Fo obeys the relationship

$$
\begin{equation*}
F O=\frac{M g X}{z^{2}}+\left(\frac{M k^{2} x}{z}\right)^{1 / 3} 4 \tag{19}
\end{equation*}
$$

Writing $M=\rho \mathrm{xZ}$, and rising the expression (yr) for A, we have finally

$$
\begin{equation*}
\stackrel{\rightharpoonup}{F o}=\frac{p_{0} x^{2}}{Z}+\left(\frac{4 \alpha^{2} x^{2} F_{0} \rho p}{p_{0}+p}\right)^{\frac{1}{3}} \tag{20}
\end{equation*}
$$

This may be used as the basis of an iterative process to determine Fo. The procedure we adopt is to use the known tonnage to select the proper values of P and C for a shrine in Hiroshima. Then we may calculate the drag coefficient from the above equations. Using this coefficient, we then proceed to the Nagasaki results to efentry peak pressure at cheeses there

COMPRFSSTON OF OIT DRIMS AND THN GANS

This method, the principles of which have been described earlier, proved to be satisfactory and somewhat bettor than might have been anticipated. The mothod, of course, is not to be regarded as comparable in cortainty with that based on the bending of a metal pipe.

The now give a series of observations in both Hiroshima and Nagasaldi. The loss of volume due to comprassion was measured for the "blue-print container" with much greater accuracy than mas possible in the other cases, because this particular drum was brought back for test. In other cases, the loss of volume was estimated with good accuracy from measurements made on the drum or can. This was possible for containers of rectangular cross section, but failed for those of circular cross section. However, we discovered by actually trying out the idea, that visual estimates could be made with surgrising accuracy. Right various drums of circular cross section were crushed by reducing the pressure insido until collapse occurred, and in most cases we made a visual estimate of the loss of volume. The loss of volume ranged from 15 per cent. to 35 par cent•; there is a remarkable difference in the appearance of drums at these two extremes. Drums were divided into olasses, according to whethar the loss of volume was 10-15 per oent., 15-20 per cent., 20-25 per cent., 2530 per cent., 30-35 per cent.. There was no difficulty in placing the drums in the right class, especially after we had measured two or three. Two of the observations given bolow are'based on a visual eatimate of the loss of volume from photographs of drums of oircular aross section.

Test of the hypotheses

The hypotheses were that on collapse the air was compressed adiabatically, and that the pressure difference between outside and inside was the collapsing pressure of the drum in the collapsed position. Two tests, one a repetition of the other, wre made to see if these ware justified, and the tests were successful. The drums used were standard British petrol drums $32 \frac{1 \mathrm{n}}{\mathrm{n}}$ high, $22^{\frac{1}{4}}$ diameter, thickness $0.048^{\prime \prime}$. There were two main ridges, with four small ones in each of the three sections. Nost of the Japanese drums were exact oopies of these in all respects.

A hyveo suction pump lowered the prossure iniside slowly with pauses for equalisation of temperature; at collepse; the pressure inside was read by a
mercury manometer connected to the inside. The volume in the collapsed position was measured. The drum was evacuated further until it again collapsed. The second collapse was gradual, in contrast to the first which was "sudden". The first collapse, however, was not so fast that one could not follow it by eye; at a rough guess, the collapse took one quarter of a second.

Atmospheric pressure
 752 mm .

First collapse when pressure inside was 295 mm .
Pressure just after collapse, 505 mm .

Volume before collapse	206,400 oc.
Volume after collapse	143,100 c.c.

Second collapse at 483 mm .
It was, of course, not possible to got the manometer reading instantly after collapse, because the mercury bounced about; the pressure inside was in the region. of 30 om, , but was falling slow ny, due to the cooling of the air inside. In view of this slight uncertainty we may say that
(1) the compression ratio was 1.44 , and the pressure inside at collapse, namely 295 mm ., should have risen to 495 mm , compared with 505 observed.
(2) the pressure outside, after first collapse, namely 752, should equal the pressure estimated inside, namely 495, plus the strength in the collapsed position, namely 269.

The agreement is vary olose. A second teat gave results very similar to the one described above, and are not quoted hare.

Bluarrint container, Hiroshima

 container, show in H 77 , of excellent construction, had a nicely fitting 110 for a large opening at the top. The lid, which had a rubber masher round it, was cramped into position with a lever on the handle. The container was. practically airtight in the compression of the blast rave; as the pressure outside foll, the lid blow open, leaving the container, it mas hoped, in an exact regiate of the peak pressure.

The container was found in the Cormunications Bureau 5000 ft . E.N.E. of X in Hiroshima. In all, there were four containers and one was lrought back for test. The three which were discarded had burnt papers in them, but the one which was selected was olean and empty. There may, of course, have been papers inside at the time of the explosion, and these had been removed before we found the container. In that case, the compression ratio would be greater than that measured in the text, because the papers vould ect as practically incompressible.

The motal lever catch was badly bent, due to the compressed air inside pushing up the lid with considerable violence as soon as the external pressure foll. It moula ferhato ien the sides of the container were also partly blown out at the same time.

The results were as follows:
Original volume 57125 c.c.
Volume in collapsed state 51525 c.c.
Ioss in volume . 9.8 per cent.
Adiabatic pressure developed $\quad 2.28$ p.s.i.
Further collapse in collapsed state at $4.2 \mathrm{~cm} \cdot \mathrm{Hg}=0.81 \mathrm{p} \cdot \mathrm{s} . \mathrm{i}^{\circ}$
Peak pressure in blast 3.1 p.s.i.
Hence we have

$$
P=3.1 \text { p.s.i. at } R=5000 \mathrm{ft}
$$

Comparison with the peak pressure estimated at distances $4000-5000 \mathrm{ft}$. shows alille
that the present value is jlow. The following are possible reasons:-
(1) The container was in a strong building and the pressure inside may not have reachad the outside value, at the place where the container was situated (unlikely),
(2) The walls of the container may have partly blown out before the lid gave way (most probable),
(3) The container may have contained numerous papers at the time of t he explosion (possible).

Crushed can, Nasasaki

A crushed can in one of the furnace buildings of the Mitsubishi Arms works 3800 ft . S. of X gave a reasonably accurate value for the pressure. The can is believed to be the one appearing in N 7 .

Brom measurements made on the can, the compression ratio was estimated at 1.53 (or the loss of volume was 35 per cont.). The adiabatic air pressuro reachad inside the can was 13 p.s.i. Adaing 1 p.s.i. far the strength of the can, we have

$$
P=14 \mathrm{p} \cdot \mathrm{~s} \cdot \mathrm{i}, \text { at } \mathrm{R}=3800 \mathrm{ft} .
$$

Grushed can, Hiroshima
The can shom in H 68, 4100 ft . S. of X in Hiroshima, was estimated from measurements on the can to have a compression ratio 1.22 (or the loss of volume was 18 per cent.). The adiabatic pressure was $4.65 \mathrm{p} \cdot \mathrm{si}$.i. Adding 0.85 p.s.i. for the strength of the can in the campressed state (the metal was very thin) we have

$$
P=5.5 \text { p.s.i. at } R=4100 \mathrm{ft}
$$

Grushod gasolino drum, Hiroshima

The crushed gasoline drum appearing in H 46 and H 25 was estimated visually to have suffered a loas of volume 35 per cent. (comgression ratio 1.53). The adiabatic overpressure was therefore 13 p.s.i.. This drum was similar to those tested in the laboratory, oxoept that tho drums tested had four small ridges in each of the three sections soparated by the large ridges. Fo found that drums with a compression similar to the one now being considered were able to withstand about 9 p.s.i., and that in the cushod state were able to withstand 5.5 p.s.i.. Reducing this to 5 p.s.i. to allow for the somowhat weaker construction wo have

$$
P=18 \text { p.s.i. at } R=900 \text { ft. }
$$

Gritical limits for tho crushing of four-gallon cans, Nagasaki and Hiroshima
There wore very many four-gallon gasoline cans $9 \times 9 \times 13.5^{\prime \prime}$ in Nagasald andifiroshima. The metal thickness was nearly always $0.013^{\prime \prime}$: four samples all agreed at this value.

The maximmin distance at which the oans had collapsed in Nagasaki wes 8000 ft ., and in Faroghime mas $\mathrm{\gamma} 500 \mathrm{ft}$. . However, a ourious obecrvation mas mado. If a oan had frilled at all, it had failed to a considerable axtont. Ono could, for cromple, find tho similer cens noxt to sach other, one of which had collepsed about 10 per cont. or a 11tt1e more and the other had not
 Aluig 1.0 psi pare strength in 61 cmased tote give us $P=3.4 \mathrm{psi}$ at $R=8000 \mathrm{ft}$ Grushing of a rectanguler csainetpe, Hiroshima

This is not a satisfactory observation, and almost cortainily gives a value which is too high. However, the dotails are given beosuse they are interesting, and fustify to some extent our decision not to pursue this method of estimation.

Nost of the drain pipes for oarrying rain water from the roods of the larger builaings in Japan are thin shoot metal pipes of very cheap and flimsy construction. Some are.made of copper and some of galvanised sheet iron. One of the better type of copper pipes was found on the reinforced concrete builaing next to the Shin Aioi Bashi in Firoshima, 1000 ft. T. of X. The particular builaing appears in H 26 where the train pipe is also seen. A section of this pipe was taken is a sample; the distortion of the aross section mes not quite the same over the mole length of the pipe, but it was thought that the sample was a fair average.

Figure 'y gives a tracing of the aross seotion. The wrea of section was moasured with the aid of a plenimeter and found to be $1.93 \mathrm{in}^{2}$. The original dimensions wore found by straightoning the matal end mesauring them; the internal dimensions were $1.78 \times 2.38 \mathrm{in}$. Hence the corprossion ratio was 2.20. The air pressure inside the pipe, from Figure 2 tharefore rose to 30 p.s.i. abovo atmospheric.

Now we must assure ourselvos that the wind pressure was not onough to crush tho pipe, after the pressure inside and out had become approximately equel. By testing the section, we estimated that about 5 p.s.i. were necessary to cause further diatortion. This is far in excess of the wind prossuce. The maximum hydrostatio pressure in the blast, cooording to this observation, is $35 \mathrm{p} \cdot \mathrm{s} .1$.

$$
P=35 \mathrm{p}, \mathrm{~s}, \mathrm{i} \text {, at } \mathrm{R}=1000 \mathrm{ft} .
$$

As axplained above, this is an incorreot result; the cause of the erreor mast be that the pipe was not arushed uniformly over its whole length.

PANIC PROBMANS

Paper panels at Hiroshima

Two light paper and bamboo screens 12000 ft . S.E. by E. from X in Hiroshima happened to be in position in a building at the time of the explosion. The screens were within 1° of the "aide on" position. Most of the panels had failed, but about 20 per cent. were intact. The individual panels wore $6^{\circ \prime} \times 3_{2}^{1 m}$. Some of the paper was brought back for test.

It was not possible to make a satisfactory panel on the full scale, and therefore half scale was chosen. The paper was mounted between two wooden clamps, each with a hole $3^{n \prime} \times 1 \frac{3 n}{4}$. One of the clamps was the end wall of a box, running. from which were two tubes, one to a Hyvac pump and the other to a mercury manometer. Then the pump was started, a partial vacuum was created in the box, and the paper panel pulled inwards. However, the paper did not break because the paper was not air tight, and air rushed through the holes. The pump was not able to burst the paper.

When a pressure pump was put on the box, the paper bowed outwards, but again the leakage of air was serious, and the readings were not considered reliable.

A third possibility was tried and found to be suocessful. The paper panel was made the bottom of a box into which mercury was introduced. The hoad of mercury was measured, and that head which caused rupture mas noted. The mercury did not leak through the holes in the paper; they wore mach too fine.

The curvature of the paper panel was very mall, and the bowing was one to two millimetres. The slight difference of head between the centre of the panel and the edges was considered unimportant. The hoad was mosesured to the centre of the panel.

Tho hoad of mercury to ouse failure in three separate tests mare as follows-

Panel 1	$2.05 \mathrm{~mm} . \mathrm{Hg}$
Panel 2	1.85
Panel 3	2.00
Average	$\underline{1.97 .}$

A reasonabiy good estimate of the peak pressure 600 ito frome z
in Biroshima may be obteined from the cracking and breakage of some glass panels in a mail chute. This chute went from the top floor to the ground floor in the large bank building SE of X, on the SW corner of the T junction of the street car lines. There were three panels on each floor, all below the posting orifice. The penels were $2^{\prime} 6^{\prime \prime}$, $l^{\prime} 0^{\prime \prime}$ and $1^{\prime} 0^{\prime \prime}$ respectively in this order descending. The distance between the supporting steel edges on either side was $6^{\prime \prime}$. Ail the edges were inset into a metal sheet slot, $3 / 4^{\prime \prime}$ deep, but the support against the large force of fracture could only be considered simple. Four of the panels on the ground and first floors were fractured. One of the two that escaped was a $2^{\prime} 6{ }^{\prime \prime}$ panel. All but one of the panels on the higher floors were intact. It appears thet the peak pressure near the ground was greater than it-was higher up. No doubt the panels in the upper floors escaped fracture to some extent because by the time the reflected shock from the ground reached them, sone air had entered the posting orifice and built up a supporting pressure of a few p.s.i. on the inside. No doubt also, the peak pressure does drop in the conditions prevailing here at the rate of perhaps $1 \mathrm{p} . \mathrm{s} .1$. per 20 ft . rise above ground level. This point needs theoretical study.

Specimens of the glass were aubaitted to ir. H. woore, the glass technologist of hessrs. Pilkington Ltc. He stated that the tensile yield strength against bending fracture of the glass would be very close to $9000 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$ He slso expressed the opinion that glass was made by the American Plate Glass Compeny in

Consiciering the panel as a beam we have that the bending moment causing fracture was 4.5 F lb . in. This equels $9000 \times(.23)^{2} / 6 \mathrm{lb}$. in. Hence $p=17.5$ p.s.i. Correcting for the finite length of the panel reguires the addition of 25 , to this value of P. Therefore, we estimate $P=22$ p.s.i. This is considered a fair estirate. Perheps 2 or 3 p.s.i. should be added to allow for the supports being slightly better than simple, and to allow for the fact that the load was not exactly critical. However, it seers safe to say that the peak pressure at the ground level was between 20 and $30 \mathrm{p} . \mathrm{s.i}$. , and thet the best

The pressure mas, therefore, 0.96 p.t.i. fore the hif sonle panel. lllowing for the feot that on the full poele, the peper rould by roletivoly one half the thiciones, wo got

 A reasonably good estimate of the peak pressme 600 fto fione z

in Hiroohiva may be obteined from the cracking and breakage of some glass panels in a mail chute. This chute went from the top floor to the grourd floor in the large bank building SE of X, on the $S W$ corner of the T junction of the street car lines. There were three penels on each floor, all below the posting orifice. The penels were $2^{\prime} 6^{\prime \prime}$, $11^{\prime \prime \prime}$ and $1^{\prime \prime} 0^{\prime \prime}$ respectively in this order descending. The distance betreen the supporting steel edges on either side was $6^{\prime \prime}$. Ail the edges were inset into a metal sheet slot, $3 / 4^{\prime \prime}$ deep, but the support against the large force of fracture could only be considered simple. Four of the panels on the ground and first floors were fractured. One of the two that escaped was a $2^{\prime} 6^{\prime \prime}$ panel. All but one of the panels on the higher floors were intact. It appears that the peak pressure near the ground was greater than it wes higher up. No doubt the panels in the upper floors escaped fracture to some extent because by the tise the reflected shock from the ground reached them, sone air had entered the posting orifice and built up a supporting pressure of a fer p.s.i. on the inside. No doubt also, the peak pressure does drop in the conditions provailing here at the rate of perhaps 1 p.s.i. per 20 ft , rise above ground level. This point needs theoreticel study.

Specimens of the glass were subsitted to kr . H. Loore, the glass technologist of hessrs. Pilkington Ltc. He stated that the tensile yield atrength against bending fracture of the glass would be very close to $9000 \mathrm{lb} / \mathrm{in}^{2}{ }^{2}$ He slso expressed the opinion that glass was made by the American Plate Glass Compeny-in America! The thickness of the glass was 0.23",

Consicering the panel as a beariy we have that the bending moment causing frecture was 4.5 F lb . in. This equels $9000 \times(.23)^{2} / 6 \mathrm{lb}$. in. Hence $\mathrm{p}=17.5$ p.s.i. Correcting for the finite length of the panel requiree the adaition of 25 , to this value of P . Therefore, we estimate $\mathrm{P}=22 \mathrm{p} . \mathrm{s} .1$. This is considered a fair estinate. Perheps 2 or 3 p.s.i, should be added to allow for the supporte being slightly better than simple, and to allow for the fact thet the loed was not exectly critical. Horever, it seers safe to say that the peak pressure at the ground level was betreen 20 and 30 p.s.i., and thet the best

The tolephone oxcharge in Hiroshima 3800 ft . T.N.F. of X had a small wooden floor as a suparstructure on part of the main ground floor, which was of correate. The woodon floor was covered by mats at the .time of the explosion and the pressure of the blast wave ras aurficient to treak the joists of one of the two weakest panols, namoly the end ones. The broken panel is shown in picturse H9O; that part of the floor board lying loose was broken by us. The whole panel was taken to pieces in order to get the details of the construction and suitable pieces for tost.

The strength of the panel which troke was ontirely that of the joists; the floor boards gave no resistance to the domward thrust of the pressure. The boards were tongued as shown in Figure 8 and the space below the floor was to a high degree of apporoximation air tight to the blast.

It is interesting to note that the panel corresponding to the one that broke, at the other ond of the floor, did not fail. Hence, we may have some confidence that the peak pressure acting on the floor was very little in excess of that sufficient to cause failure of the end panols.

The panel which gave way was $43^{\prime \prime} \times 136^{\prime \prime}$. It was-supported by 9 equidistant joints, at $17{ }^{7 \prime}$ centres. . The ends of the joists nearest to the wall rosted on the brick party wall, and were, therefore, only simply supported. The joists ran from the party wall over a beam $4^{\prime \prime} \times 6^{\prime \prime}$ and then over two more similar boans each spacod at $43^{\mathrm{\prime} \mathrm{\prime}}$ contres, and finally on to a small briok mall, based on the comeete floor.

Bight of the nine joists under the panel were snapped. The one that did not fail was the corner one. The one at the other corner was different from the rest; it was simply supported at both onds. Apparently that corner of the floor had beon takon up at some time and the joist cut through or replaced by a short piece.

SECRET

The wood was all in very good condition - there was not the slightest trace of damp. A piece of one of the broken joists, with parts of the floor boards still attached, was brought beck for tests. The tests were made by the Forest Products Laboratory, Princes Risborough.

The dimensions of the joists were taken, and the distance of the break taken from the simply supported end. The exact point of break could not, of course, be located; we simply measured to a point which appeared to be central.

Beginning with the joist which was simply supported each end, we found

Hence, the average dimensions vire $21 / 16^{\prime \prime} \times 21 / 16^{\prime \prime}$, and the point of break was 14° from the simply supported end, except for the end joist which was simply supported both ends and broke in the middle.

To represent joists $1-8$ we consider a beam on three supports all at the same level, the separation between the beams being $L\left(L=43^{\prime \prime}\right)$. The left-hand support and the control support are simple while the right -hand ono is clamped horizontally, Let w be the load per inch run, and measure x from the left-hand support. Writing y for the deflection, we have the following conditions:-

$$
\begin{array}{lll}
x=0 & y=0 & y^{\prime \prime \prime}=0 \\
x=2 & y=0 & y^{\prime} \text { continuous } y^{\prime \prime} \text { continuous } \\
x=2 \text { L } & y=0 & y^{\prime}=0
\end{array}
$$

Solving this beam problem, we find that the maximum bonding moment oconrs at $-11 \mathrm{I} / 28$ from the 1 eft-hand end, and has the value $0.0774 w \mathrm{I}^{2}$. Hence the break
should ooor at 17 from the free ond, compared with the observed value 14%.
To estimate the peak pressure, we have that 7 of the nine joists were of the cetegery just oonsidered. Ono other (joist nimber 3) had a knot at the break, and we assume two-thirds full strength for this joist. The joist simply supported at both ends has a maximm bêding momont at the cantre of $0.125 \mathrm{w} \mathrm{I} \mathrm{I}^{2}$. Honce this joist is only 0.62 as strong as the others.

Iet P be the maximm hydrostatio pressure. Then the load per inch run on the 9 joists is 136 P. Equating this to $(7+0.67+0.62)$ the strength of the beam problem above, we get as the load for the single joist

$$
w=136 \mathrm{P} / 8.28
$$

According to the Forest Products Laboratory, the maximum bending moment for a section $2^{\prime \prime} \times 2^{\prime \prime}$ is the avorage of 14050 and 17280 , i.e. 15660 lb.in., less 10 per cent. for the fact that the wood was ceoss-grained 1 in 10 at the failure. Therefor, the bending moment to snap a $2^{* \pi} \times 2^{m}$ section is 14100 lb . in. The carresponaing figure far a section $2^{1 / 16^{\prime \prime} \times 21 / 16^{\prime \prime}}$ is 15500 lb . in. Hence.

$$
\begin{gathered}
0.0774(136 \mathrm{p} / 8.29) \times 43^{2}=15500 \\
\mathrm{p}=6.6 \mathrm{p} . \mathrm{s.i} .
\end{gathered}
$$

There still remains open the question whether the failure of the joists was progressive, and, of course, the time taken for failure. It does not seem profitable to elaborate the caloulations further; since some of the ccrections are positive and others nogative, we have as our best estimate

$$
P=6.6 \mathrm{p} . \mathrm{s.1.} \text { at } R=3800 \mathrm{ft}
$$

It should be noted that there were two other wooden panels, supported by joists in another part of the main floor. The joists spanned $34^{\prime \prime}$, were simply supported at both onds, and spaced at $17^{\prime \prime}$ centres. The dimentions wore $1 \frac{1}{2}{ }^{\mathrm{Na}}$ horisontally by $2^{\text {" }}$ vertically. The joists had failed badly. The critical peak pressuce is between 5 and 6 p.s.i•, but these panels were not considered as good for our purposes as the one desoribed above.

Moolchest, Mogesaldi

An excellent example of the dishing of a metal plate was found in a heavy machins shop 2300 ft . from X . The plate was $16^{\prime \prime} \times 18^{\prime \prime}$ and thare was a pormanent set of $\frac{3}{4}$ at the centre. No distortion of the supporting edges could be obscrved even when a straight edge was hold against them.

SECRET

A piece of the plate was brought back for measurement; the thickness mas $0.056^{\prime \prime}$.

A model to the scale of $3 / 7$ mas made and a load was applied to the plate by a testing machine pressing through some wooden bowie on to come wet sand lying on the plate.

Dike gran shew the mpangements. Fou tests ware made and the results are show in the table below, and graphically in Figure

Thickness of metal plate. .021", Surface atmonsions $6 \times 6 \frac{3}{4}$ (scale $3 / 7$) Internal dimensions of box $\quad 6 \frac{7}{4} \times 7 \frac{7_{4}^{3}}{3}$

Load	Deflection (1)	Deflection (2)	Deflection (3)	Deflection (4)
15	0	0	0	0
215	0.07	0.08	0.07	
415	0.09	0.10	0.09	
615	0.12	0.13	0.11	
815	0.14	0.15	0.15	
1015	0.18	0.18	0.17	
1215	0.20	0.20		
1415	0.23	0.23		
1615	0.27	0.27		
1815	0.29	0.29		
2015	0.33	0.32		0.41
2215	0.37	0.48		0.30
2415	0.45			
Permanent set	0.35	0.40	0.03	

Load in pounds; deflections in inches; permanent set in inches after loading to maximum value given in the column.

Second test gave a sudden collapse at 22001 b .
By interpolation, for a set of $9 / 32^{w}, \nabla=2035 \mathrm{lb}$. to which must be added 15 Ib . for sand.
II. 19

Hence $\mathrm{I}=2050 \mathrm{Ib}$.

$$
\begin{aligned}
P & =2050 \div 6.88 \times 7.75 \\
& =38.5 \mathrm{p.s.1}
\end{aligned}
$$

Of the four tests (1) and (4) were the best, and gave the most symmetrical dishing. Taking only the two, we get 40 pesci. as the peak pressure. This tenet our boat estimate f present, lit the witter, for toner gro in the next section, io we the
 Safe door, Hiroshima

A safe of old and cheap design 200 ft . from X was dished by the blast. The two mild-steel doors, symmetrical about their central free edges were $72.4^{\prime \prime} \mathrm{x}$ $24.7^{\prime \prime}$. The thickness was $0.363^{\prime \prime}$. The set at the centre of the free edges was $4^{\prime \prime}$. The two short sides of each door were simply supported, the long central edge was, of course, free and the outside long edge was simply supported except for two hinges each $10^{\circ \prime}$ long, the centres of the hinges being separated by $20^{\prime \prime}$. A model was made of half the door and an approximately uniform load was applied by means of a testing machine acting through wooden blocks and wet sand. Diegrem \leftarrow gives the derangement. The results of the test and the deductions therefrom ara given below.

Door model $14.8 \times 4.95^{\prime \prime}$. Inside dimensions of box $6 \times 15.7^{\prime \prime}$. Not an exact model. Length and width to scale $1 / 5$. Thickness on one-fifth scale would be $0.0726^{\prime \prime}$. Actual thickness 0.056".

Load (lb.).	Deflection (inches).
0	0
25	0.20
100	0.25
200	0.30
300	0.35
400	0.39
500	0.42
600	0.47
700	0.54
800	0.58
1000	0.61
1100	0.62
1200	0.65
1300	0.68
1400	0.70
1500	0.72
1600	0.74
1700	0.76
1800	0.79
1900	0.84
21000	0.90
	0.95
	1.02

Permanent set after remaining 2100 lb . load was $0.23^{\prime \prime}$.

Similar experiment. Same errangement, but thickness of metal plate 0.021".

Load $\left(\begin{array}{r} \\ \mathrm{lb} .)\end{array}\right.$	Dofloction (d ins.)	7.14	0.375 a
5	0	36	0
10	0.13	71	0.049
15	0.21	107	0.08
20	0.27	142	0.10
25	0.32	178	0.12
30	0.41	213	0.15
35	0.47	249	0.18
49	0.62	348	0.23
63	0.78	447	0.29
77	0.87	547	0.33
91	0.95	644	0.36
105	1.07	743	0.40
119	1.22	843	0.46
140	1.55	992	0.58
154	1.70	1490	0.64
168	1.95	1190	0.73
178	2.15	1260	0.81

Did not give a very will shaped permenent set. The free odge was not bored very regularly but the set was approximately 0.5".

It will be sean by a comparison of the last two columns, with the provious table that the ordinery laws of $\lambda^{e l a s t i c ~ d e f o r m a t i o n ~ h o l d ~ f a i r l y ~ w e l l . ~}$ According to these laws, if the thickness is increased n times, and the loai n^{2}, then the deflection is n times less. Mgure 5 shows the results graphically.

From Figure 5 , the loed required to produce the scale deflection 0.62^{*} is 2700 lb.. Scaling this back to a thioknoss $0.0726^{\prime \prime}$, we get the load as 46001 b. . The pressure is therefors

$$
\begin{aligned}
P & =4600 \div 6 \times 15.7 \\
& =49 \text { p.s.i. }
\end{aligned}
$$

SECRET

This figure perhaps needs correction to allow for the fact that the mild steel of the door in Hiroshim had a different yield strength than the rolled steel plate on which the test was made. The correction is probably only a few percent, and will be neglected. We therefore have

$$
p=50 \text { p.s.i. at } R=0 \text { ft. }
$$

This semele is not considered extcidy trutivorting; an mifioved experine shale be made, and will probably shaw peat Puts poteen 30 and 40 psi: INSERT Dished office cabinet in Hiroshima

An office cabinet in the Communications Bureau in Hiroshima 5000 ft . E.N.E. of X was dished by the blast. The top metal plate was $23^{\mathrm{Nmm}} \times 15^{\mathrm{m}}$, and the thick thickness was $0.018^{\prime \prime}$. The edges were crimped $\frac{z_{n} n}{4}$ over the sides. The set at the centre was 1.3^{m}, and the two long edges were bent in $\frac{1^{\prime \prime}}{4^{\prime \prime}}$ and $3 / 16^{\prime \prime}$ respectively. The short edges were straight.

It was considered that the tests on the Nagasaki tool chest provided sufficient data for evaluating this observation. According to the tests on the tool chest, a load 41 p.s.i. on a panel freely supported at the edges, $0.021^{\prime \prime}$ thick and $6^{\prime \prime} \times 6_{4}^{\frac{3 \pi}{m}}$ sides gave a set $0.35^{\prime \prime}$. This is just the amount required according to the scaling method used below.

We define the affective size of the plates in terms of the sum of the inverse squares of the sides. This method of procedure is reasonable as long as the two edges are not widely different in length. If the edges were very different, the whole problem would change in oharioter. Nor example, if one edge wore infinite, the metal plate would yield much more easily; only a bending set however would be involved, and not a stretching of the central parts of the dish. A bending set can easily be straightened out with a pallet and anvil, but the sets of the type we are considering cannot, because the central parts of the metal have been stretched.

Thus for the office cabinet

$$
L_{1}=2 /\left[1 /(15)^{2}+1 /(23.6)^{2}\right]^{\frac{1}{2}}=17.9^{m}
$$

and for the plate representing the tool chest

$$
I_{1}=2 /\left[1 /(6)^{2}+1 /(6.75)^{2}\right]^{\frac{1}{2}}=6.25^{\prime \prime}
$$

The ratio of metal thickness to L for the office cabinet is 0.00101 and for the model tool chest is 0.00336 . The pressures are in the squares of these ratios.

INSERT

Thereis a pomililty fretional fones in 1 la sand allunal sare of be land oo he mphoved by actig arehing in the wet sand, hased an the edge nypurt. An ari bellow would be a max whefactey way of Afflying a uniform presuce, whore magribtede uso fenam exactly. Harveres, tume did not lounit a better tednique berig dewliped; an atbint mill be made at lesuix. of did: the pryotuctor guers made in tris sectarn and ta hearain one altangh it is ciffidelly experter the the venlt ull not be mioh in asss.

SECRET

Hence

$$
P=3.7 \text { p.s.i. at } R=5000 \mathrm{ft}
$$

Failure of a wooden wall 15000 ftc, Hiroshima

This observation is considered fairly reliable. The discordance between the pressure estimated here, and that estimated at $12,000 \mathrm{ft}$. from the paper panels *, is probably real, and illustrates the local variations in the peak pressure at large distances.

One panel of the end wall of a large timber storage bern $15,000 \mathrm{ft} . \mathrm{Sa}$. of X in Hexishima had failed under the blast. The barn was practially airtight; there were no windows and only two small doors, both of which the owner of the bern stated emphatically were closed at the time of the explosion. There were cracks about $1 / 16^{\prime \prime}$ between the planks of which the wall was made. The particular panel which had failed was made of vertical planks $0.65^{\prime \prime}$ thick nailed on to seven horizontal pieces of wood $1.4^{\prime \prime}$ horizontally $\times 1.85^{\prime \prime}$ depth (average values). The point of failure averaged $51^{\circ \prime}$ from one end. The planks were about 11" wide and 12' high. The wood was red pine similar to the wood of the joists of the telephone exchange. The clearance at the bottom, above ground, was 1", and the planks were free top and bottom. The cross pieces, of which there were 7, each 110^{m} long, were nailed at each end to sturdy circular upright pieces, buried in the ground. The end wall consisted of two panels of the type described, and the side walls were similar, except that the spans were about $85^{\prime \prime}$, instead of $110^{\prime \prime}$. The inverted V spaces at the two end walls were filled in by planks, mounted horizontally. These were undisturbed, as were all panels except the one described. Using the measured yield strength of the timber, the hydrostatic pressure is 0.23 p.s.i.. This, we estimate, must be increased to $0.28 \mathrm{p.s.i}$. to give the peak pressure in the blast. Therefore

$$
P=0.28 \text { p.s.i. at } R=15000 \mathrm{ft} .
$$

SECRET O

Ramiro Parruoks liargraki

The Tami go Pamenels fere not all conn late, but most of the buildings were occupied by workers from the litsub hi works. The buildings were merely flinty sheds. An ayrrozinate value of the peak pressure mas obtained by noting that two of the cheat which had collapsed abe dom because the upright posts supporting the wooden plank malls, ama the tref, had ancyped it the withe. The shed folded in like a
anvitemes. concertina
The members that shaped wore 4" $\times 3^{\prime \prime}$, sins ty supported top and bottom, of height 10 feet. They were graced f feet ans t. The ocd was pine.

The load per square inch on the rall that would cause the snapping of the vertical supports is $0.40 \mathrm{p} .3 . \mathrm{i}$. The correction to be made for the finite yield time is not significant.

Near to the barracks were sone paper panel screens exposed "aidefain to the blast. These were not dank ed although they would have at 0.5 p.s.i. Hence re may say in th moderate accuracy that.
$\mathrm{P}=0.45 \mathrm{p} . \mathrm{s} . \mathrm{i}$. at $\mathrm{R}=23,000 \mathrm{ft}$.

The basement of the Chamber of Commerce, Kiroshima, $1,000 \mathrm{ft}$ W. of X, was used as an air raid shelter. The ground sloped a little, sway from the main road, and the back side of the building was a few feet lower than the front. Three panels of the back of the building (i.e. N siae) in the basement, freely exposed to the outside air, arit were dished in by the hydrostatic pressure. The dishing was severe, and it was clear that the steel reinforcements had stretched until the panel was in equilibrium with the pressure difference on the two sides. The concrete was oracked, but very little had actually fallen off the reinforcements. A reasonable estimate of the peak pressure may be obtained by applying the usual. theory of the dishing of a membrane by pressure.

The panel was $8^{\prime} \times 13^{\prime}$, and the dish was 22 ". The concrete was $4 \frac{1}{2} n$ thick, but this fact is not required, since the conorete soted only as a medium for applying the load to the steel. The reinforcements were $5 / 16^{\prime \prime}$ rods on $6^{\prime \prime}$ centres.

According to the theory of dishing given by Taylor, and a similar theory by Kirkwood (see report S.iF. 24 equation 44), the dishing I produced by a pressure P, the sides being $2 a$ and $2 b,(a>b)$ is given by

$$
\begin{equation*}
H=\frac{P}{T}\left(\frac{16 b^{2}}{\pi^{2}}\right)\left[\operatorname{sech}\left(\frac{\pi a}{2 b}\right)-\frac{1}{27} \operatorname{sech}\left(\frac{3 \pi a}{2 b}\right)+\cdots\right] \tag{21}
\end{equation*}
$$

where T is the yielaing tension per inch run.
In our case assuming a 20 ton steel, $T=520 \mathrm{lb} / \mathrm{in}$. Substituting into (21)
the ezece formula), it is found that $P=20$ p.s.i. The accelerations of the
 of ycalarced be made, in veis of the foct stet the stel had strotshed and becone sightly thiner, ant Mrdody whe thenfore coned tahe len temion.

Failure of Reinforced Concrete Panels Nagasaki and Hiroshima.

The ground floor of the Adininistration Building of the Torpedo Works in Nagasaki $4,050 \mathrm{ft}$. N. of X acted as the roof of the air raid shelter in the basement. The shelter was practically unventilated; the windows, which in any case were small, had been almost entirely bricked up. The only opening of any size was the door at the top of the stairs connecting the ground floor to the basement. The basement was about $100^{\prime} \times 30^{\prime} \times 9^{\prime}$. Thus, when the pressure of the explosion wave reached the building, the pressure in the shelter did not change. On the other hand, the large window space on the ground floor level allowed the pressure inside to reach that of the outside almost instantaneously. The effect of the pressure difference on the two sides of the reinforced concrete floor was to dish in most of the panels. A careful study was made of the construction of the floor in order to estimate the peak pressure in the blast.

Practically the same situation to that just described was found in the Radio Building in Hiroshima 3100 ft N. F of X Again, details were taken of the floor construction.

The problem of the Nagasaki panel was put to the Cnnorete Section of the Road Research Laboratory, Harmondsworth, to estimate the uniform static load that would cause failure to the extent observed. It seems, however, that not sufficient is known about concrete panels to make any absolute figures certain. The edge conditions of the panel are important for assessing the load, and all that the Rosa Research Laboratory could say, after considering the problem in some detail, was that the load was more than 10 p.s.i. and less than $20 \mathrm{p} . \mathrm{s.i}$.

Much closer limits to the peak pressure may be had by comparing the floor in Nagasaki with the one in Hiroshima. Since the pressure acting on the latter is known with some accuracy from other observations, it is possible to obtain from the comparison a reliable estimate for Nagasaki.

The Road Research Laboratory considered that the exact amount of dish was not significant; the panels gave their maximum resistance before they first failed; once failure of the steel was caused, the panel yielded more easily. The concrete in the two floors were very similar, both described from samples, as of moderate quality, and the thickness in each case was $5.8^{\prime \prime}$ with a ${ }^{\prime \prime}$ layer of piaster and asphalt on top.

There were three similar panels in Nagasaki, each $15^{\prime} \times 23^{\prime}$ (see Pictures N. 51) - The panels were continuous on their 23 ' sides, running over heavy beams. The 15^{\prime} sides were attached on one side to the walls of the building, and on the other ran over a heavy beam and then on to the other wall. The details of the reinforcement were, obtained by knocking a hole $4^{\prime} x_{4}^{\prime}$ in the floor. The roinforcopents were all $\frac{1}{2} n$ rods, disposed as shown in Figure The reinforcements were brought up over the supports, and overlapped the next panel by about 3 feet. The deflection at the centres were $9.5^{\prime \prime}, 9.8^{\prime \prime}$ and about 4". (The third panel could not be measured accurately because an enormous pile of rubble had been thrown on it). A fourth panel with a little extra support in one corner, due to the stairs, had not dished.

The floor panel in Hiroshima was $20^{\prime} \times 20^{\prime}$; the rods were $\frac{1}{2}{ }^{\prime \prime}$ at $6^{\prime \prime}$ centres A second similar panel had not failed. The panel was not supported as well as the one in Hiroshima. Two contiguous edges were fixed to the outside walls; one of the other edges was continuous, over a heavy beam underneath and then on to the far wall. The fourth edge was also continuous to a neighbouring room, but the support was a vertical Mall, soross the building. On the other side of this wall was a similar panel which had not failed. The wall did not run through to the basement. There appeared to be no failure of this wall, but a curious pattern was seen on the wall itself. Vertical gashes about $3^{\prime \prime}$ wide and 10" centres showed clearly in the mortar. No doubt the ateol reinforcements stretched and the stress distribution had the lerodialy of the steel, and caused the plaster to crack and fall away near the steel. The steel was exposed in a few places.

The floor was also attached to a second vertical wall, which did not go through to the basement. This mas was $5^{\prime} 6^{\prime \prime}$ from one side and made the fourth wall of a room $20^{\prime} \times 14^{\prime} 6^{\prime \prime}$. This wall contained a door and a window. On the other side of the wall was the passage leading from the fro door. The passage wall had parted from the floor; there mas a $3^{\prime \prime}$ gap at the centre, and the steel reinforcements were necked and all but the end ones snapped.

The deflection at the centre of the dish was $10^{\prime \prime}$ and the centre of the dish was central in the $20^{\prime} \times 14^{\prime} 6^{\prime \prime}$ rooms.

It is clear how the Hiroshima floor behaved. As the pressure came on, the $14^{\prime} 6^{\prime \prime} \times 20^{\prime}$ panel failed; then the passage wall failed, and the $20^{\prime} \times 20^{\prime}$ panel gave a few more inches.

Sumariaing what 1. been asid above, we have that no Negasaki panels $15^{\prime} \times 23^{\prime}$ dished $9.8^{\prime \prime}$ and the Hiroshima panel $14^{\prime} 6^{\prime \prime} \times 20^{\prime}$ dished $7^{\prime \prime}$. Since the exaot amount of the pressure wave and the build-up of pressure below the panol, wo may obtain the ratio of the peak pressures in the two cases simply by comparing thair etfuctures. Yany mathods have bsen tried, but none aprears more satisfactory than simply taking the ratio of the anounts of steel per square foot. The ratio Nagasaki: Hiroshima is $5 ; 4$

Since the peak pressure in the wave was $10 \mathrm{p} . \mathrm{s} . \mathrm{i}_{\text {. }}$ on the firoshima panel, the pressure was 12.5 p.si, on the Nagasaki panel. This estimate is probably accurate within 1 p.s.i.

$$
P=12.5 \text { p.s.i. } R=4,050 \mathrm{ft} \text {. in Nagasaki. }
$$

Barthemrare drain pipe in Nagasald

This is an interesting example, because it demonstrates the great pressure developed on the ground in Nagasaki. Unfortunately, the observation does not permit more than rough acouracy.

A vertical earthemwere drain pipe, helf embedded on the sloping bank of the approach to the Shiroyama Primary School (a few yards from the place where picture N was taken) $1150 \mathrm{ft} . \mathrm{F}$. of X , broke under the pressure of the blast. The embedded part was very firmly supported, and the whole pipe was held in position by a layer of mortar $\frac{3 \pi}{4}$ thick. The pipe was only $30^{\prime \prime}$ long; the external diameter of the earthemware was $10^{\prime \prime}$ and the thicloness $\frac{1{ }^{\prime \prime}}{}{ }^{\prime \prime}$. The entire exposed half was broken to pieces; most of the pieces were swept away by the blast, but a fow were trapped inside. There seemed no doubt that the pipe had failed by crushing and not by floxure.

Professor A.J.S. Pippard, of Imperial Colloge London, kindly made a test described in his letter which is printed bolow. Using his crata, neglecting the strength of the mortar, and scaling down from a thickness $\frac{\mathrm{J}_{\mathrm{n}}}{\mathrm{n}}$ to $\frac{1}{2}$, the crushing pressure was 150 p.s.i.

$$
\mathrm{P}=150 \mathrm{p} \cdot \mathrm{sci} \cdot \text { at } \mathrm{R}=1150 \mathrm{ft}
$$

This estimate must be qualified to some extent, as follows. It is not olear how the estimate of peak pressure should be modified to allow for the contours of the bank and thus obtain an estimate for level ground. The pulse that lroke the pipe was probably the reflected wave from the path just in front of the drain pipe. The peak pressure, of course, is miltiplied by a factor at least four on this roflection. Then this refleoted pulse strikes the bank, still a further multipligation is introduced. In other words, the incident downward pulse has been
funneled into a wedge shaped region of angle about 120°, one side of the wedge being the path, and the other the bank. The miltiplication produced in this way may have been as high as 10 over the "free air" pressure.

Making allowances for the unavoidable uncertainties in the cause of fracture of the pipe, it still seems reasonably safe to say that the peak hydrostatic pressure on level ground 1150 ft. from X would be of the order 100 p.s.i.

Dear Penney,

I have nov made the test on the earthemware pipe which I think is as near as we can hope to get to the conditions you described to me.

The pipe was $10 \frac{4}{4}^{3 n}$ outside diameter and $9^{\prime \prime}$ inside diameter and a section approximately $4^{\prime \prime}$ wide was out from this and bedded in sand in a specially made box. Care was taken to prevent the sand from getting inside the pipe by puttying the edges of the specimen to the sides of the box. A stiff bar was placed on the top surface of the sand and a load applied to its centre; thus approximating to a uniformly distributed load along the sand resting of the ton section of the specimen.

The test went quite steadily until a load of 4.75 tons was roached when a crack was heard and on dismantling the test wo found that the specimen had cracked into four equal quadrants, the oraoks being at. the onds of the diemeters through the load and at the onds of the diameter at right-angles to this. It looks, therefore, dis though this pipe would take from $1-1 \frac{1}{4}$ tons per inch length before failure occurred, provided the load oan be oonsidered reasonably uniform as seems

- likely in your caso.

Yours sincerely,
(sga.) A.J.S. Pippard

Telegraph pole, Nagasaki

Telegraph poles were, on the whole, disappointing. Several were still standing immediately under the explosion; those from a few hundred feat up to 3500 feet were all down. At 3500 feet, an occasional pole was standing, and at 4500 feet most wore standing. The difficulty in interpreting the failure of a pole is, of course, the uncertain pull from the wires. The most favourable cases wore poles in a line running to the Mitsubishi Torpedo Forks. One pole, a little off the main line, presumably carrying a side line, at 3400 feet from X was measured; the wood was in good condition, there appeared to be only one cross bar, and the blast ran in the direction of the wires. The pole was snapped at ground level.

Diameter at base $8^{\prime \prime}$. Diameter at top 7". Height 27'
Wood Thuyopsis dolobrata or Conninghamia lanceolata
Bending Moment to snap $8^{\text {m }}$ section, according to Forest Products Laboratory, Princes Risborough, 1,125,000 1b.in.. The drag pressure was 3.24 p.soi. Assuming a drag coefficient 0.5, apparently the proper value for a smooth cylinder of such large diameter, a peak pressure was 16 p.s.i.

Now we have to consider two factors, influencing our opinion in opposite directions. First, that the pole snapped, so that the estimate must be increased. Second, that the pole carried wires. Since the wires were not much affected by the wind of the explosion, it is submitted that a peak pressure 16 p.s.i. at 3400 ft . is approximately correct.

$$
P=16 \text { p.s.i. at } R=3400 \mathrm{ft} .
$$

An interesting observation, but not one from which we have attempted a qualitative estimate, related to a pole near the Shiroyama Primary School. This pole snapped 11 feet from the top: the diameter was uniformly 7 , and the surface was very smooth. The distance from X was 1100 feet. Apparently this pole.snapped ; in the incident pulse, before the reflected shock reached it. Other examples in the range $1000 \mathrm{ft}-1500 \mathrm{ft}$. were found where the rather heavy and complicated tops of power poles snapped the pole near the tope (See picture $\mathbb{N} 84$).

Whether the tops came off because the poles were guyed just below the tops, or whether the tops received the impact of the initial downward shook and immediately snapped off, was not clear. Probably both effects were present simultaneously.

It is worth noting that practically all of the poles that came down snapped; nones of them merely turned in the ground, displacing the earth. A for came out bodily, leaving a hole about five feet deep. Perhaps the prevalence of typhoons in Japan was the reason for the very strong method of fixing the base of the pole.

Failure of I beam, Hiroshima

A rolled mild steel I beam 1900 ft . W. of X in Hiroshima failed under the wind pressure. The beam was vertical, and mas 26 ft . high; it was used to carry a cross wire across the road to a similar beam on the other side. The cross wire carried the power line for the street car. There appeared to be no need to allow for the drag of the wire on the beam, and there were no complications involved in the nature of cross arms or other objects at the top of the beam. The blast was parallel to the centre web. Figure \mathcal{f} gives a tracing of tho shape of the beam, copied from a piece of paper pressed against the and of the beam. (There was one other similar beam which had collapsed completely). The beam which stood up was partly shielded from the blast by a building, and therefore the estimate based on this beam must be considered as a lower limit.

Let S be the drag pressure per square inch on the beam. Then the bending moment about the base is $242000 \mathrm{~S} \mathrm{1b}$. in.

Let Y be the yield strength. Then the yielding bending moment is 16.9 Y , and with $\mathrm{Y}=25$ tons/in ${ }^{2}$., the most probable value for this steel, the bending moment is 95000 lb . in. Hence

$$
S=2.56 \text { p.s.i. }
$$

The drag coefficient is about 0.8 , and the peak pressure in the shock just sufficient to cause failure is $12 \mathrm{p} \cdot \mathrm{s}$. .

Allowing for the fact that one I beam was prostrate, while the partly shielded one was only slightly bent, we estimate that the peak pressure mas about 15 p.s.i. Thus $P=15$ p.s.i. at $R=1900 \mathrm{ft}$.

Plamoles in Hiroshima,

Two observations on flagpoles in Hiroshima now to be desoribed are - regaried as giving estimates of high accuracy. The Bngineering and Aerodymamics departments of the National Physical Laboratory (Teddington) made tests on a length of one of the poles, including the bent, part, and estimated the shock pressure that would justasuse vield. Their results are described in the letter, prinited below. Correotion must.be mede to allow for the-inertia of the poles and the finite angle of bend.

The first flagiole, from therbank $3,200 \mathrm{ft}$. B . of X , was of length2g9", outside diameter $2.40^{\prime \prime}$, thickness 0.140^{n}, yieldan angle 0.114 radians. According to N.P.L. the drag pressure was 0.50 p.s.i. and the shock velocity to cause yield was 1.186 C where e is the gound velocity in the original air. The drag coefficient was 0.4 .5 . The shock pressure was $7.0 \mathrm{p}, \mathrm{s} . \mathrm{i}$.

The moment of inertia is $8850 \mathrm{lb} \mathrm{ft}^{2}$, and the yielding berding moment in the "set" condition was 9.2×104 poundals ft . Using formulae (9) and (14), and knowing by the method of trial and error that the Pinai shook pressure is sbout $10 \mathrm{p} .3 . \mathrm{i}$., we have $\alpha=2.44 \sec ^{-1}$. We fien then ottan

$$
\text { Po }=0.923 \text { p.s.i. }
$$

Finding a self-consistent solution, using the variation of drag coefficient with Reynolds number given in the N.P.I. diagram (Figure II of this Repert), we get that the drag coefficient was 0.52 , the time of yield was 0.28 seo, and

$$
P^{\prime}=9.2 \text { p.s.i. at } R=3,200 \text { feet. }
$$

The error in this estimate is considered to be less than 10%.
The second pole on the Electrio Comyany Builaing aistance $2,100 \mathrm{ft}$ from X fare of
length 114^{n} outsiade diameter $2.40^{\prime \prime}$ thickness $0.140^{\prime \prime}$ yielded an angle 0.075
radians. According to N.P.L. the shock velooity was 1.342 e, and the reak shook prossure was 13.6 p.s.i. The drag pressure to cause yield was 2.62 p.s.i. and the drage coofficient was 0.655 . The moment of inertia was $960 \mathrm{lb} \mathrm{ft}^{2}$, and the yielding bending moment as before was 9.2×10^{4} poundels feet.

Using the value of $\alpha=3.1 \operatorname{seo}^{-1}$, we find that in order to account for the observed yield, the peak drag pressure was $3.44 \mathrm{p} . \mathrm{B} .1$. The time of yield was 0.11 seconds, and the drag coefficient was 0.69 . The peak pressure - was 15.4 p. i. 1 .

$$
P=15.4 \text { fiat } R=2100 \mathrm{ft} \text {. }
$$

Copy of letter from Dr. Hankins N.P.L. to Dr. Fenny. Dear Dr. Penny,

Further to your visit of 23 nd November the calculations suggested have now been completed.

The tube left with us was measured and appeared to be straight down to a point about 18 inches from the lower end. A portion 18 inches long was out to include the straight portion and tested in bending using four point loading in a testing machine. The bending moment applied when the strain-movement curve ceased to be linear (as determined by electric strain gauges) was taken as being equal to that applied at the point of junction of the distorted and undistorted parts of the tube during the explosion. From this the uniformly distributed pressure which might have been applied to the tube was dalculated using conventional formulae.

$$
\begin{aligned}
& \text { Results are as follows:- } \\
& \qquad \begin{array}{l}
\text { Length of Mast }-239 \text { inches } \\
\text { Effective Pressure }=0.5 \pm .012 \mathrm{lb} / \mathrm{sq} . \text { in. } \\
\text { Length of Mast }-114 \text { inches } \\
\text { Effective Pressure }=2.62 \pm .18 \mathrm{lb} / \mathrm{sq} . \text { in. }
\end{array}
\end{aligned}
$$

In calculating the strength of the blast waves necessary to produce these pressures the simplifying assumption has been made that the wave is of the form of a normal shook wave travelling perpendicularly to the mast and the effect of heat radiated from the explosion has been neglected. It should be pointed out that while the pressure differences associated with the wave front may be considerable the time taken for the wave to pass the mast (less than 0.2 milliseos) is small compared with the natural period of the mast (about $\frac{1}{2}$ sec. for the 20 ft . mast). It is therefore assumed that permanent set is caused by the pressures developed by the air stream following the wave.

The drag coeffigientfor the mast has been taken as that corresponding to a fairly smooth cylinder the results for which are available from N.P.I. Compressed Air Tunnel tests (see Fig, 1). Over the range of Reynolds Number (R)
concerned the drag depends considerably on the roughess of the surface (e.\&. for a polished metal surface at $R=5 \times 10^{5}$ the arag coefficient is 0.33 while the roughest cylinder tested had a drag coefficient of 0,79). The values given are a fair estimate considering the nature of the surface of the mast. With these values of drag coefficient and for the atmospheric conditions specified below, the velocity of the wave passing over the mast to give the calculated pressures is about $1350 \mathrm{ft} / \mathrm{sec}$. for the 20 ft . mast and $1530 \mathrm{ft} / \mathrm{sec}$. for the $\frac{9}{2} \mathrm{ft}$. mast. The conditions behind the waves may be read off from Fig. 1. It will be noticed that for the short mast the air following the wave is moving at a Mach number of about 0.45 ; recent work in the N.P.L. High Syeed Tunnels on cylinders indicates that compressibility effects at low Reynolas numbers (in general below critical Reynolds Number) increase the drag ooefficient at Mach numbers above 0.3 .

Further information on this aubject is given in a paper by A. Perri The Influence of Reynolds Number at high Mach Numbers (Atti di Guidonia No. $67 / 69$) which indicates that as the Mach number is increased the Gritical Reynolds number for oylinders is also inoreased. By extrapolating the curves given in this paper it appears that at a Reynolds Number of about 5×10^{5} the drag coefficient is about 0.9. With this value of the drag coefficient for the shorter mast the wave velocity is about 1470 ft . rer sec.

The figures on which the curves of Fig. 1 are based sre given on the accompanying sheet.

Yours faithrully

> G.A. Hankins.

MATIONAL PIMSYCAT IABORATORY

Ensineoring Division

Basis of Calculation

The atmospheric conditions have been teiren as Fressure (p_{1}) 14.67 lbs /sa.in.; Temperature $\left(\mathrm{T}_{1}\right) 25^{\circ} \mathrm{C}$; Donsity $\left(\mathrm{P}_{1}\right) .0739 \mathrm{Jbs} . / \mathrm{cu} . \mathrm{ft}$.

- (The air has been assumed dry, the influence of humidity is unlikely to cause more than a one per cent. exror) The velocity of sound at $25^{\circ} \mathrm{C}$. (a_{4}) $-1138 \mathrm{ft} / \mathrm{sec}$. Viscosity of air at $\mathrm{T}_{3} \mathrm{O}^{\mathrm{A}}$ given by

$$
\mu_{T}=\mu_{273}\left(\frac{273+c}{T_{3}+c}\right) \quad\left(\frac{T_{3}}{273}\right)^{3 / 2}
$$

where $\mu_{273}=1.153 \times 10^{-5} \mathrm{lb} . / \mathrm{ft} /$ sec.

$$
c=117
$$

Reynolds Number $R=\frac{u_{3} D \rho_{3}}{\mu_{3}}$.

Where $u_{3, R} 3^{T_{3}} r^{\mu} 3$ are velocity, density, temperature and viscosity of air behind ${ }^{2}$
D. is diameter of mast. (0.2 ft.)

Drag coefficient $C_{D}=$ Pressure on mast $/ \frac{1}{2} \rho_{3} u_{3}{ }^{2}$
Mach Number of wave $\left(\mathrm{H}_{1}\right)=\mathrm{U} / \mathrm{a}_{4}$ where $\mathrm{U}=$ velocity of wave.
Mach Number of air behind wave $\left(\mathrm{M}_{3}\right)=\mathrm{J}_{3} / \mathrm{a}_{3}$

The conditions behind the wave given in Fig. 1 have been onlonlated assuming the well loom Rankine-Rayleigh| relations through a perpendicular shook wave. The "stagnation" temperature rise plotted is the excess temperature over the ambient temperature $\left(T_{1}\right)$ assuming that the air behind the wave is brought to rest adiabatically.

The energy dissipation has been onloulated from the expression
Energy dissipation per aq. ft. of wave per see. $=\mathcal{P}_{3} \hat{u}_{3} C_{p}\left(F_{o}^{1}-T_{1}\right)$
where $T_{0}^{1}=$ Stagnation temperature rise.
$\mathrm{C}_{\mathrm{p}}=$ Specific heat of air at constant pressure (taken as 0.2413 c. $\left.\mathrm{H} . \mathrm{U} / \mathrm{lb} \cdot /^{\circ} \mathrm{C}.\right)$.

Frought inon ladders on the noof of City Offices, Hiroshima

Three stimilar wrought iron ladders on the roof of the City Offices in Eiroshima 3600 ft . S.S.E. of X were affected by the wind of the explosion. The roof was not all at the same hoight; seversl parts were $8-10 \mathrm{ft}$. higher than other parts. The laders vere provided for getting fron one region of the roos to anothem. The ladders went up a wall, some 10 feet high, over a parapet wall and then down about two feet. Piotures H 85 and H g6 illustrate the construction of these ladders. The wind of the explosion happened to be parallel to the parapet, and caused the tops of the ladders to bond over. Ptogren givee-the-relevent-amenetioner

Suppose that the peak drag pressure was S p.s.i. Then the bending moment of the drag about tho point of failure was $4340 \mathrm{~S} \mathrm{p} \cdot \mathrm{S}$. i.

Now we must estimate the bending moment that caused the failure of the iron. It was not olear to the writer whether the stress distribution across the segtion was two symmatrical parts, one in tension and the other comprossion, the magnitude of the stress everywhere being the yield value, or whather the strass was more like that prevailing while the strain was still olastic. The benaing moment por unit width in the two cases are $\mathrm{Ta}^{2} / 4$ and $\mathrm{Ta}^{2} / 6$ whare a is the thiolness and T is the yield strength. Acoordingly a piece of wrought iron was olamped as a cantilever; the loaded free longth was $27^{\prime \prime}$, the width was $1.45^{\prime \prime}$ and the thickness was $0.266^{\prime \prime}$. The load deflection resul,ts were as follows, beginning with half the weight of the bar plus the weight of the pan.

Ioad (1b.)	Doflection (ins)
2	0
7	0.65
12	1.34
17	1.97
22	2.60
27	3.27
30	3.80
32	4.8 (creeping)

The load-dofleotion ourve was plotted. The yield load wis 301 b , and the blnding moment to oause yiold mas 8001 lb . in.

Scaling this to the ladder problem, the bending moment for yleld of both ayms was 3470 lb , in.
II. 28.

The dreg pressure to cause yield was, therefore, $\subset .80$ p.s.i. The drag coefficient is about 0.8 , and the peak pressure was 6.4 p.s.i. Allowing for the inertia of the ladder and the decay of the shook wave, the peak pressure is corrected to 7.5 p.s.i. Hence

$$
\mathrm{P}=7.5 \text { at } \mathrm{R}=3600 \mathrm{ft} .
$$

Shrine in Hiroshima

The appearance of the overturned stones is show by ?. This particular shrine was. 3800 ft E of X . There were two types of stones, both artificial granites.
(1) Number I granite, with bold markings and very highly polished surface. Density 2.57 gm . per co.
(2) Number II granite, dull grey stone, rough surface. Density $2 . j 8$. Measurements were usually confined to I.

The blast was perpendicular to one face. Stones overturned

$$
\begin{array}{lll}
x=9.8^{\prime \prime} & z=26.5^{\prime \prime} & \text { (five examples almost identical) Granite I } \\
x=8.1 \quad z=29^{\prime \prime} & \text { (two examples) } & \text { Granite I } \\
X=6.5 \text {, } h 6 \text { Follow or from reit fere. }
\end{array}
$$

$x=6.5^{\prime \prime}$,
of these, the second is the most nearly oritical, and we have $X^{2} / Z=8.55 \mathrm{~cm}$. We know that P is approximately 7 p.s.i., and α is $2.0 \mathrm{sec}^{-1}$. Solving (20) for Fo, we find

$$
F \circ=0.92 \text { p.s.i. }
$$

Hence the drag coefficient is 0.82 . Notice how the inertia of the stone (or what comes to the same thing, the decay of the blast wave) has put up the initial dirag pressure. If the wind had been of infinite duration, a value Fio $=0.318$ p.s.i. rould have overturned the stone, compared with 0.92 p.s.i. actually necessary in this explosion. The time taken to reach the topping position was 0.2 secs.

Shrine in Nagasaki

Many stones were overturned in a shrine 4700 ft . N of X in Nagasaki, near to the Torpedo Works. The blast was not quite normal to the stones, the angle of ineidence being about 70°.

The oritical stones which overturned were $14 \times 16 \times 38^{\prime \prime}$, and the turning edge was the $16^{\prime \prime}$ side.

A preliminary solution of the problem shows that P is about 8 p.s.i; from The I, we haver $\alpha=1.36 \mathrm{seo}^{-1}$.

$$
\begin{aligned}
& \text { Solving }(18)(20) \text { we get find } \\
& \therefore \text { Fo }=1.16 \text { p.s.i., }
\end{aligned}
$$

- oompared with a value 0.49 p.s.i. in a steady wind. Using the drag coefficient 0.82 found in Hireshima, we find that the peak pressure was $7.9 \mathrm{p} . \mathrm{s} .1$ (anthe time to reach the toppling position was 0.4 secs.

To oorrect for the blast not being inoident normally, we divide Fo by cos 70°, and have for these stones at normal inciaence $\mathrm{Fo}=1.21$; to find the peak pressure we take the dras coefficient as $0.82 \sec ^{-1} 70^{\circ}=$ 0.77 . Hence our final figure is 8.5 p.s.i.

$$
P=8.5 \text { p.s.i.at } R=4,700 \mathrm{ft} .
$$

Visual Estimates of the Beak Pressure from the Severity of Damage.

This section has no claim to scientific accuracy. Nevertheless, notes made at the time of inspection of the damage agree exactly with the results obtained from the analysis desoribed elsewhere in this Report, even though in the writer's preliminary reports, they were considered to disagree.

The writer made a close inspection of the Macdonald Ranch at Trinity. The features of interest vere the size of the glass fraguents, the damage to window frames and doors, the appearance of oracked plaster, the way in which the roof atructure and corrtgated iron of the outhouses had been affected, and the general eqpearance of the builaing from outside and within.

An attempt was made to estimate there the damage in Nagasaki and in Hiroshima was equal to that in the Maodonald Ranch. The estimates rere 12,000 feet S of X in. Nagasaki and 7,500 ft. in Hiroshima. In Nagasaki, the damage to the Prefectural Office $(10,800 \mathrm{ft})$ was distinotly more severe then ât the Kacdonald Rench, while in the American Consulate ($13,000 \mathrm{ft}$) it was slightly less. In Hiroshima, the damage on the west side of the Mijuki Bashi was distinctly more severe than at the Macdongld Ranch, while 500 ft to S.E. of this bridge, the damage was distinctly less severe.

The peak pressure at the Macdonald Ranch was 1.4 p.s.i. The distence was $10,200 \mathrm{ft}$. from X. Hence the visual estimates on the demage at the 1.4 p.s.i. level suggest that the tonnage in Nagasaki was 1.48 greater than Trinity, and the tonnage in Hiroshima was 0,40 that of Trinity. The accepted blest tomage for Mrinity is 13,000 . Thus, we have from visual estimates alone, the tonnage at Nagasaki was 19,000, and at Hiroshima was 5,000

A further comparison was attempted to assess the distance from X in Hiroshima at which the damage was the same as at Dijima Tharf in Nagasaki (distance $10,500 \mathrm{ft}$). The place selected was the Gas Morks, (distance 6,500 ft.) This oomparison gives the tonnage in Nagasaki as 4.2 times that in Hiroshima, again a surprisingly aocurate estimate.

Sumarising.

$$
\begin{aligned}
& P=1.4 \text { at } R=12,000 \mathrm{ft} \text { in Nagaeaki } \\
& P=1.4 \text { at } R=6,500 \mathrm{ft} \text { in Hiroshima. }
\end{aligned}
$$

Little need be said in this Report on the difficulty of accurately assessing the equivalent tonnage of an explosion, In -the firnet-ptece, Foe anolechappald-en-tho dopinitien miopted. There are two equally logical definitions
(1) that the blast wave not too near the centre should be fitted to that given by an actual tonnage of T.N.T.
(2) thar the blast wave not too near the centre should be fitted to a theoretical pressure curve obtained by the most complete calculations yet performed.

The disadvantage of (1) is that the question of sealing fid small charges to large charges is involved. Also, the experimental results on actual bare charges are variable, and nothing better than 10 per cent accuracy can be given for the peak pressurecradius curve for a given tonnage, or a 20% accuracy in estimating the tonnage from a known pressure radius curve.

The disadvantage of (2) is that the mathematical difficulties are very great, and complete confidence cannot be placed in the results so far obtained. Further, the results apply only to "free-air". The complicated shook wave patterns caused by the proximity to the ground cannot be introduced into the theory.

The tonnage corresponding with the theoretical curve is found by dividing the energy released by the detonation energy of T.N.T. However, the energy released by a T.N.T. explosion in sir is to some extent augmented by after burning of the products. No doubt this is the principal reason for the divergence between the two methods.

The simplest procedure, and the one actually adopted here is to use the experimental results on small charges. A report 0.S.R.D. 4076 by A.H. Taub gives a valuable series of curves for the peak pressure on the ground for explosion of unit weight of T.N.F. above the ground. The appropriate curves were selected and scaled up to fit as well as possible the observations in Hiroshima and Nagasaki. The best fit a pears to be $I=5,000$ tons for Hiroshima and $Z=20,000$ tons for Nagasaki. Since the heights of detonation wese1850 and 1800 ft respectively, we have in the
two cases
$H / 1 S^{1}=8.3 \quad$ (Hiroshima)
$\mathrm{H} / \mathrm{T}^{1}=5.1$ Nagasaki.
Using Iamb's curves, we have the following expected values

Hiroshima

Ret.	900	1120	1570	2240	3140	3810	4480	6100
P p.s.i	22.6	20.6	16.5	13.2	9.5	7.2	5.5	4.3

Nagasaki

Ret	2500	2830	3540	4240	4950	6000	7080	8500
P p.s.1:	23	20.7	14.5	10.5	8.1	5.7	4.4	3.3

The observations to be fitted are as follows

* Values marked with an asterisk are oonsidered the most roliable.
(1) Ectinted solue whid the witter bebeies wle be confuied ly eats better expeumelation. Tis wll be cidectala bater

Summary of Results Nagasaki

Distance from feet	Peak Pressure	p.s.i.

* Values marked with an asterisk are considered the most reliable.
(1) Estranged value whit te writer babe would be carfuried by better expomentation. This ill be underbid peter.

SECRET

- The way in which these expected curves fit to the actual observations is show in Figures 12 ana 13 . It will be noticed that the observed curves fall away more quickly than the expected curves. This effect is be lieved to be real, and represents the absorption of energy from the blast wave in causing destruction. Furthermore, the fit at the high pressure end is not sock, and the writer is not quite certain how the observed curve should be drawn. Possibly also Taub's curves are in error; the experimental results are not always reliable near the flame zone .

Using Taub's Figure 11, the free air pressure at 1850 ft from 5000 tons is 11.3 p.s.i. On impact at a rigid wall (the ground) the pressure Tin ayer fail well inkle to pressure sided 35psi would rise to about 28 p.3.1. minuet thercioro free ix arp dower
obsazration an the sefo door ($50-\mathrm{pus}$ in $)$ or else allow- it-ani-sey that the -heat of the rextiation-ar fuxthey-eheols-replactions-ineile-the

 arrangement for applying a uniform load. Wet sand is not very satisfactory;
 as good as ore wales life.

In Nagasaki, the pressure on the grouni undoubtedly reached $150-200$ p.s.i. According to Taub's Figure 11, the pressure at 1800 ft in free air from 20,000 tons is $50 \mathrm{p} . \mathrm{s} . i$. On impact at a rigid wall (the ground) this would rise to $150-200 \mathrm{p}$: si. This agrees with the observations on the earthenware drain pipe and on the dished tool ohest.

To summarise, we may say that the observations show that the blast equivalent in Hiroshima was 5000 tons and in Nagasaki was 20,000 tons. These figures may be compared with those obtained by comparing the I.B.M. calculations with the air- gauge massuroments of Alvarez The figures quoted are 5000 and 15,000 tons respectively. $(1$ ton $=22401 \mathrm{~b})$ The agreement is satisfactory, especially when the two following points are considered
(1) The pressure pulse from the Nagasaki mast have passed through several hundred feet of cloud before reaching the gauge. This would probably decrease the magnitude of the pulse.
(2) The I.B.K. calculations do not agree very well with Figure 11 of Tub's paper, although the agreement is fair at large distances. However, the I.B.M. run has been taken much further than Taub's curves, and one cannot be sure that the I.B.M. run really represents high explosive curves. In any case, our estimates are based on figures in the high pressure region ($20-2$ p.s.i.) and the agreement here is not good. YFititurtrate-the
 figurer

Acco) ing to the I.B.M. run for 15,000 tons, the over pressure is 1 atmosphere or $14.7 \mathrm{p} . \mathrm{s}, \mathrm{i}$, at $R=465 \mathrm{~m}=1526 \mathrm{ft}$. The corresponding value of Z in ligure is is 4.95 , and the overpressure is 50 p.s.i. Again the I.B.M. run gives 2 p .3 .1 . at $1620 \mathrm{~m}=5300 \mathrm{ft}$. The 2 value is 17.3 and the corresponding overpressure is 3 p.s.i. At the 1 p.s.i. level, the I.B.M. gives $2800 \mathrm{~m}=$,200 ft, and $Z=29.8$. Figure 11 gives $1.5 \mathrm{p} \cdot \mathrm{s} . \mathrm{i}$. Hence, the discrepancy id dEcreasing but theresbems no reason why the two ansvac shana, be equivalent at the e. precis, level Clearly, further theoretical work is necessary. Until this work is performed we prefer to use only experimental curves on high explosive in forming our estimates of the tonnage blast equivalents.

SECRET

